1
|
Zöhrer J, Ascher‐Jenull J, Wagner AO. Tracking Different States of Spiked Environmental DNA Using Multiplex Digital PCR Assays. Environ Microbiol 2025; 27:e70086. [PMID: 40151898 PMCID: PMC11950903 DOI: 10.1111/1462-2920.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025]
Abstract
The study of microbial communities based on the total environmental DNA (eDNA) is influenced by the presence of different eDNA states, i.e., intracellular (iDNA) and extracellular DNA (exDNA), and the choice of the DNA extraction method. Although the use of spike-and-recovery controls facilitates the diagnosis of such issues, appropriate experimental setups simultaneously accounting for the different eDNA states and their bacterial origins are missing. Here, we used two single-gene deletion mutants of both Escherichia coli and Bacillus subtilis to trace exDNA and iDNA spike-ins of each selected model organism within environmental samples. Unique primer/probe sets were developed for each strain, allowing their absolute quantification using multiplex digital PCR assays. The proposed spike-and-recovery controls were successfully applied to various environments including soil, sediment, sludge and compost. While the percent recovery of spiked iDNA differed significantly between E. coli and B. subtilis, results were similar for both model organisms in the case of spiked exDNA, emphasising that the fate of DNA molecules in the environment is similar irrespective of their bacterial origin. Hence, future studies may benefit from the proposed approach to better understand methodological ambiguities related to the eDNA extraction in general as well as the separation of the different eDNA states.
Collapse
Affiliation(s)
- Julia Zöhrer
- Department of MicrobiologyUniversität InnsbruckInnsbruckAustria
| | - Judith Ascher‐Jenull
- Department of Experimental Architecture, Integrative Design ExtremesUniversität InnsbruckInnsbruckAustria
| | | |
Collapse
|
2
|
Embacher J, Zeilinger S, Kirchmair M, Neuhauser S. Prokaryote communities associated with different types of tissue formed and substrates inhabited by Serpula lacrymans. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:642-655. [PMID: 37789578 PMCID: PMC10667670 DOI: 10.1111/1758-2229.13191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/07/2023] [Indexed: 10/05/2023]
Abstract
The basidiomycete Serpula lacrymans is responsible for major timber devastation in houses. Basidiomycetes are known to harbour a diverse but poorly understood microbial community of bacteria, archaea, yeasts and filamentous fungi. In this study, we used amplicon-sequencing to analyse the abundance and composition of prokaryotic communities associated with fruiting bodies of S. lacrymans and compared them to communities of surrounding material to access the 'background' community structure. Our findings indicate that bacterial genera cluster depended on sample type and that the main driver for microbial diversity is specimen, followed by sample origin. The most abundant bacterial phylum identified in the fruiting bodies was Pseudomonadota, followed by Actinomycetota and Bacteroidota. The prokaryote community of the mycelium was dominated by Actinomycetota, Halobacterota and Pseudomonadota. Actinomycetota was the most abundant phylum in both environment samples (infested timber and underground scree), followed by Bacillota in wood and Pseudomonadota in underground samples. Nocardioides, Pseudomonas, Pseudonochardia, Streptomyces and Rubrobacter spp. were among others found to comprise the core microbiome of S. lacrymans basidiocarps. This research contributes to the understanding of the holobiont S. lacrymans and gives hints to potential bacterial phyla important for its development and lifestyle.
Collapse
Affiliation(s)
- Julia Embacher
- Institute of Microbiology, Universität InnsbruckInnsbruckAustria
| | | | - Martin Kirchmair
- Institute of Microbiology, Universität InnsbruckInnsbruckAustria
| | - Sigrid Neuhauser
- Institute of Microbiology, Universität InnsbruckInnsbruckAustria
| |
Collapse
|
3
|
González-Plaza JJ, Furlan C, Rijavec T, Lapanje A, Barros R, Tamayo-Ramos JA, Suarez-Diez M. Advances in experimental and computational methodologies for the study of microbial-surface interactions at different omics levels. Front Microbiol 2022; 13:1006946. [PMID: 36519168 PMCID: PMC9744117 DOI: 10.3389/fmicb.2022.1006946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/02/2022] [Indexed: 08/31/2023] Open
Abstract
The study of the biological response of microbial cells interacting with natural and synthetic interfaces has acquired a new dimension with the development and constant progress of advanced omics technologies. New methods allow the isolation and analysis of nucleic acids, proteins and metabolites from complex samples, of interest in diverse research areas, such as materials sciences, biomedical sciences, forensic sciences, biotechnology and archeology, among others. The study of the bacterial recognition and response to surface contact or the diagnosis and evolution of ancient pathogens contained in archeological tissues require, in many cases, the availability of specialized methods and tools. The current review describes advances in in vitro and in silico approaches to tackle existing challenges (e.g., low-quality sample, low amount, presence of inhibitors, chelators, etc.) in the isolation of high-quality samples and in the analysis of microbial cells at genomic, transcriptomic, proteomic and metabolomic levels, when present in complex interfaces. From the experimental point of view, tailored manual and automatized methodologies, commercial and in-house developed protocols, are described. The computational level focuses on the discussion of novel tools and approaches designed to solve associated issues, such as sample contamination, low quality reads, low coverage, etc. Finally, approaches to obtain a systems level understanding of these complex interactions by integrating multi omics datasets are presented.
Collapse
Affiliation(s)
- Juan José González-Plaza
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | - Cristina Furlan
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Tomaž Rijavec
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Lapanje
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Rocío Barros
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | | | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
4
|
Gómez-Brandón M, Fornasier F, de Andrade N, Domínguez J. Influence of earthworms on the microbial properties and extracellular enzyme activities during vermicomposting of raw and distilled grape marc. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115654. [PMID: 35792389 DOI: 10.1016/j.jenvman.2022.115654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The treatment of winery wastes by using appropriate management technologies is of utmost need in order to reduce to a minimum their disposal and avoid negative environmental impacts. This is of particular interest for grape marc, the main solid by-product of the winery industry. However, comparative studies on a pilot-scale dealing with the impact of earthworms on marc derived from both red and white grape varieties during vermicomposting are still scarce. The present study sought to evaluate the changes in the biochemical and microbiological properties of red and white raw marc in the presence and the absence of the earthworm species Eisenia andrei. The distilled marc obtained through distillation of the red grape marc was also considered under this scenario. Samples were taken after 14, 28, 42, and 63 days of vermicomposting. On day 14 earthworms led to a pronounced increase in most of the enzymatic activities, but only in those vermireactors fed with raw marc from the red grape variety. Alfa- and beta-glucosidase as well as chitinase and leucine-aminopeptidase activities were between 3 to 5-times higher relative to the control, while alkaline phosphomonoesterase was even up to 14-fold higher with earthworm presence. From day 28 onwards the magnitude of earthworms' effect on the studied enzymes was also dependent on the type of grape marc. Reduced values of basal respiration, ranging between 200 and 350 mg CO2 kg OM h-1 and indicative of stabilized materials were found in the resulting vermicomposts. Moreover, the content of macro- and micronutrients in the end products matched with those considered to have the quality criteria of a good vermicompost. Altogether, these findings reinforce the effectiveness of vermicomposting for the biological stabilization of grape marc with the dual purpose of fertilizer production and environmental protection.
Collapse
Affiliation(s)
| | - Flavio Fornasier
- CREA Research Centre for Viticulture and Enology, Gorizia, Italy; SOLIomics s.r.l., Via del Cotonificio, 129/B, 33100, Udine, Italy
| | - Nariane de Andrade
- Departamento de Ciencia do Solo, Universidade Federal de Santa María, Río Grande do Sul, 97105-900, Brazil
| | - Jorge Domínguez
- Grupo de Ecoloxía Animal (GEA), Universidad de Vigo, Vigo, 36310, Spain
| |
Collapse
|
5
|
Nagler M, Podmirseg SM, Ascher‐Jenull J, Sint D, Traugott M. Why eDNA fractions need consideration in biomonitoring. Mol Ecol Resour 2022; 22:2458-2470. [PMID: 35652762 PMCID: PMC9545497 DOI: 10.1111/1755-0998.13658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/12/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022]
Abstract
The analysis of environmental DNA (eDNA) is revolutionizing the monitoring of biodiversity as it allows to assess organismic diversity at large scale and unprecedented taxonomic detail. However, eDNA consists of an extracellular and intracellular fraction, each characterized by particular properties that determine the retrievable information on when and where organisms live or have been living. Here, we review the fractions of eDNA, describe how to obtain them from environmental samples and present a four-scenario concept that aims at enhancing spatial and temporal resolution of eDNA-based monitoring. Importantly, we highlight how the appropriate choice of eDNA fractions precludes misinterpretation of eDNA-based biodiversity data. Finally, future avenues of research towards eDNA fraction-specific analyses are outlined to unravel the full potential of eDNA-based studies targeting micro- and macro-organisms.
Collapse
Affiliation(s)
| | | | | | - Daniela Sint
- Department of ZoologyUniversität InnsbruckInnsbruckAustria
| | | |
Collapse
|
6
|
Special Issue on ‘Hide and Seek of Soil Microbes—Who Is Where with Whom and Why?’. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Our question posed for and used as title of the special issue ‘Hide and Seek of Soil Microbes’–Who is Where with Whom and Why [...]
Collapse
|
7
|
Purahong W, Tanunchai B, Muszynski S, Maurer F, Wahdan SFM, Malter J, Buscot F, Noll M. Cross-kingdom interactions and functional patterns of active microbiota matter in governing deadwood decay. Proc Biol Sci 2022; 289:20220130. [PMID: 35538788 PMCID: PMC9091849 DOI: 10.1098/rspb.2022.0130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Microbial community members are the primary microbial colonizers and active decomposers of deadwood. This study placed sterilized standardized beech and spruce sapwood specimens on the forest ground of 8 beech- and 8 spruce-dominated forest sites. After 370 days, specimens were assessed for mass loss, nitrogen (N) content and 15N isotopic signature, hydrolytic and lignin-modifying enzyme activities. Each specimen was incubated with bromodeoxyuridine (BrdU) to label metabolically active fungal and bacterial community members, which were assessed using amplicon sequencing. Fungal saprotrophs colonized the deadwood accompanied by a distinct bacterial community that was capable of cellulose degradation, aromatic depolymerization, and N2 fixation. The latter were governed by the genus Sphingomonas, which was co-present with the majority of saprotrophic fungi regardless of whether beech or spruce specimens were decayed. Moreover, the richness of the diazotrophic Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium group was significantly correlated with mass loss, N content and 15N isotopic signature. By contrast, presence of obligate predator Bdellovibrio spp. shifted bacterial community composition and were linked to decreased beech deadwood decay rates. Our study provides the first account of the composition and function of metabolically active wood-colonizing bacterial and fungal communities, highlighting cross-kingdom interactions during the early and intermediate stages of wood decay.
Collapse
Affiliation(s)
- Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120 Halle (Saale), Germany
| | - Benjawan Tanunchai
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120 Halle (Saale), Germany.,Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
| | - Sarah Muszynski
- Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany
| | - Florian Maurer
- Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany
| | - Sara Fareed Mohamed Wahdan
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120 Halle (Saale), Germany.,Department of Botany, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Jonas Malter
- Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany
| | - François Buscot
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120 Halle (Saale), Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
| | - Matthias Noll
- Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany.,Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany
| |
Collapse
|