1
|
Larcombe E, Alexander ME, Snellgrove D, Henriquez FL, Sloman KA. Current disease treatments for the ornamental pet fish trade and their associated problems. REVIEWS IN AQUACULTURE 2025; 17. [DOI: 10.1111/raq.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/21/2024] [Indexed: 01/05/2025]
Abstract
AbstractThe trade in live ornamental fishes to be held as companion animals or displayed in public aquaria has an estimated global annual value of US$15–20 billion. Supply chains for ornamental pet fishes often involve many more parties than for fish farmed as food fishes, and at each stage, fishes are exposed to stressors including handling, confinement, crowding, mechanical disturbance, and poor water quality. If chronic, these stressors can compromise their immune system, making fishes more susceptible to pathogens. Mortality and morbidity from infectious disease can result in considerable welfare impacts and massive economic losses for the industry, and the range of infective agents seen in ornamental species is well documented. However, treating these diseases is not straightforward with practices varying greatly across the trade and with several approaches having unintended consequences, such as the emergence of resistant strains of pathogens. While disease treatments for a handful of fish species (e.g., koi, goldfish) have received focused research attention, for the home aquarium owner, there is an increasing reliance on products based on natural compounds which have received far less scientific attention. This review aims to highlight the gaps in our knowledge surrounding the range of disease treatments used across the ornamental pet fish trade, with a particular focus on freshwater tropical species destined for home aquaria. Consideration is given to the potential problems arising from these treatments, including microbial resistance and effects of treatments themselves on fish health and welfare.
Collapse
Affiliation(s)
- E. Larcombe
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| | - M. E. Alexander
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| | - D. Snellgrove
- Waltham Petcare Science Institute Waltham‐on‐the‐Wolds Leicestershire UK
| | - F. L. Henriquez
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| | - K. A. Sloman
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| |
Collapse
|
2
|
Ziaunys M, Sulskis D, Veiveris D, Kopustas A, Snieckute R, Mikalauskaite K, Sakalauskas A, Tutkus M, Smirnovas V. Liquid-liquid phase separation of alpha-synuclein increases the structural variability of fibrils formed during amyloid aggregation. FEBS J 2024; 291:4522-4538. [PMID: 39116032 DOI: 10.1111/febs.17244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/25/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Protein liquid-liquid phase separation (LLPS) is a rapidly emerging field of study on biomolecular condensate formation. In recent years, this phenomenon has been implicated in the process of amyloid fibril formation, serving as an intermediate step between the native protein transition into their aggregated state. The formation of fibrils via LLPS has been demonstrated for a number of proteins related to neurodegenerative disorders, as well as other amyloidoses. Despite the surge in amyloid-related LLPS studies, the influence of protein condensate formation on the end-point fibril characteristics is still far from fully understood. In this work, we compare alpha-synuclein aggregation under different conditions, which promote or negate its LLPS and examine the differences between the formed aggregates. We show that alpha-synuclein phase separation generates a wide variety of assemblies with distinct secondary structures and morphologies. The LLPS-induced structures also possess higher levels of toxicity to cells, indicating that biomolecular condensate formation may be a critical step in the appearance of disease-related fibril variants.
Collapse
Affiliation(s)
- Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania
| | - Darius Sulskis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania
| | - Dominykas Veiveris
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania
| | - Aurimas Kopustas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Ruta Snieckute
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania
| | | | - Andrius Sakalauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania
| | - Marijonas Tutkus
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania
| |
Collapse
|
3
|
Wu YX, Hu SY, Lu XJ, Hu JR. Identification and characterization of two novel antimicrobial peptides from Japanese sea bass (Lateolabrax japonicus) with antimicrobial activity and MO/MФ activation capability. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104726. [PMID: 37149238 DOI: 10.1016/j.dci.2023.104726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023]
Abstract
Piscidins participate in the innate immune response of fish, which aims to eliminate recognized foreign microbes and restore the homeostasis of immune system. We characterized two piscidin-like antimicrobial peptides (LjPL-3 and LjPL-2) isolated from Japanese sea bass (Lateolabrax japonicus). LjPL-3 and LjPL-2 showed different expression patterns in tissues. After Vibrio harveyi infection, the mRNA expression of LjPL-3 and LjPL-2 was upregulated in the liver, spleen, head kidney, and trunk kidney. The synthetic mature peptides LjPL-3 and LjPL-2 exhibited different antimicrobial spectra. Furthermore, LjPL-3 and LjPL-2 treatments decreased inflammatory cytokine production while promoting chemotaxis and phagocytosis in monocytes/macrophages (MO/MФ). LjPL-2, but not LjPL-3, displayed bacterial killing capability in MO/MФ. LjPL-3 and LjPL-2 administration increased Japanese sea bass survival after V. harveyi challenge, which was accompanied by a decline in bacterial burden. These data suggested that LjPL-3 and LjPL-2 participate in immune response through direct bacterial killing and MO/MФ activation.
Collapse
Affiliation(s)
- Yi-Xin Wu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Department of Physiology, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Shuai-Yue Hu
- Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China
| | - Xin-Jiang Lu
- Department of Physiology, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Jian-Rao Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
4
|
Lv B, Huang X, Lijia C, Ma Y, Bian M, Li Z, Duan J, Zhou F, Yang B, Qie X, Song Y, Wood TK, Fu X. Heat shock potentiates aminoglycosides against gram-negative bacteria by enhancing antibiotic uptake, protein aggregation, and ROS. Proc Natl Acad Sci U S A 2023; 120:e2217254120. [PMID: 36917671 PMCID: PMC10041086 DOI: 10.1073/pnas.2217254120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/25/2023] [Indexed: 03/15/2023] Open
Abstract
The potentiation of antibiotics is a promising strategy for combatting antibiotic-resistant/tolerant bacteria. Herein, we report that a 5-min sublethal heat shock enhances the bactericidal actions of aminoglycoside antibiotics by six orders of magnitude against both exponential- and stationary-phase Escherichia coli. This combined treatment also effectively kills various E. coli persisters, E. coli clinical isolates, and numerous gram-negative but not gram-positive bacteria and enables aminoglycosides at 5% of minimum inhibitory concentrations to eradicate multidrug-resistant pathogens Acinetobacter baumannii and Klebsiella pneumoniae. Mechanistically, the potentiation is achieved comprehensively by heat shock-enhanced proton motive force that thus promotes the bacterial uptake of aminoglycosides, as well as by increasing irreversible protein aggregation and reactive oxygen species that further augment the downstream lethality of aminoglycosides. Consistently, protonophores, chemical chaperones, antioxidants, and anaerobic culturing abolish heat shock-enhanced aminoglycoside lethality. We also demonstrate as a proof of concept that infrared irradiation- or photothermal nanosphere-induced thermal treatments potentiate aminoglycoside killing of Pseudomonas aeruginosa in a mouse acute skin wound model. Our study advances the understanding of the mechanism of actions of aminoglycosides and demonstrates a high potential for thermal ablation in curing bacterial infections when combined with aminoglycosides.
Collapse
Affiliation(s)
- Boyan Lv
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City350117, China
| | - Xuebing Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City350117, China
| | - Chenchen Lijia
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City350117, China
| | - Yuelong Ma
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City350117, China
| | - Mengmeng Bian
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City350117, China
| | - Zhongyan Li
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City350117, China
| | - Juan Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou City350122, China
| | - Fang Zhou
- Department of Pharmacy, Southern University of Science and Technology Hospital, Shenzhen City518055, China
| | - Bin Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou350122, China
| | - Xingwang Qie
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou215163, China
| | - Yizhi Song
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou215163, China
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA16802-4400
| | - Xinmiao Fu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City350117, China
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou City350117, China
| |
Collapse
|
5
|
Chen YT, Ma YM, Peng XX, Li H. Glutamine potentiates gentamicin to kill lab-evolved gentamicin-resistant and clinically isolated multidrug-resistant Escherichia coli. Front Microbiol 2022; 13:1071278. [PMID: 36532472 PMCID: PMC9755591 DOI: 10.3389/fmicb.2022.1071278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/10/2022] [Indexed: 10/27/2023] Open
Abstract
INTRODUCTION Gentamicin is a conventional antibiotic in clinic. However, with the wide use of antibiotics, gentamicin-resistant Escherichia coli (E. coli) is an ever-increasing problem that causes infection in both humans and animals. Thus, it is especially important to restore gentamicin-mediated killing efficacy. METHOD E. coli K12 BW25113 cells were passaged in medium with and without gentamicin and obtain gentamicin-resistant (K12-R GEN ) and control (K12-S) strains, respectively. Then, the metabonomics of the two strains were analyzed by GC-MS approach. RESULTS K12-R GEN metabolome was characterized as more decreased metabolites than increased metabolites. Meantime, in the most enriched metabolic pathways, almost all of the metabolites were depressed. Alanine, aspartate and glutamate metabolism and glutamine within the metabolic pathway were identified as the most key metabolic pathways and the most crucial biomarkers, respectively. Exogenous glutamine potentiated gentamicin-mediated killing efficacy in glutamine and gentamicin dose-and time-dependent manners in K12-R GEN . Further experiments showed that glutamine-enabled killing by gentamicin was effective to clinically isolated multidrug-resistant E. coli. DISCUSSION These results suggest that glutamine provides an ideal metabolic environment to restore gentamicin-mediated killing, which not only indicates that glutamine is a broad-spectrum antibiotic synergist, but also expands the range of metabolites that contribute to the bactericidal efficiency of aminoglycosides.
Collapse
Affiliation(s)
- Yue-tao Chen
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
| | - Yan-mei Ma
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
| | - Xuan-xian Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
6
|
Chen SY, Zhan XL, Jiang R, Dai YW, Lu JF, Yang GJ, Chen J, Lu XJ. Matrix metalloproteinase-25 from Japanese sea bass (Lateolabrax japonicus) is involved in pro-inflammatory responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 129:104348. [PMID: 35026231 DOI: 10.1016/j.dci.2022.104348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Matrix metalloproteinases (MMPs) are highly expressed in leukocytes and macrophages, which play a role in the innate immune response. Here, the cDNA sequence of MMP25 from Japanese sea bass (Lateolabrax japonicus) (LjMMP25) was identified. Phylogenetic analysis revealed that LjMMP25 was most closely related to large yellow croaker MMP25. Multiple sequence alignment of LjMMP25 with MMP25 sequences from other teleosts revealed that regions of known functional importance were highly conserved. Expression analysis revealed that LjMMP25 was highly expressed in the head kidney and widely expressed in other tissues including gill, spleen, and liver. LjMMP25 was found to regulate inflammatory cytokine production and promote phagocytosis and bacterial killing in monocytes/macrophages (MO/MФ). Furthermore, LjMMP25 regulated the inflammatory response by modulating NF-κB signaling. These findings reveal new information about the role of LjMMP25 in regulating pro-inflammatory responses in this species.
Collapse
Affiliation(s)
- Si-Ying Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Lin Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Jiang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - You-Wu Dai
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Fei Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Guan-Jun Yang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Department of Physiology, Department of Hepatobiliary and Pancreatic Surgery of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| |
Collapse
|
7
|
Lv B, Zeng Y, Zhang H, Li Z, Xu Z, Wang Y, Gao Y, Chen Y, Fu X. Mechanosensitive Channels Mediate Hypoionic Shock-Induced Aminoglycoside Potentiation against Bacterial Persisters by Enhancing Antibiotic Uptake. Antimicrob Agents Chemother 2022; 66:e0112521. [PMID: 34902270 PMCID: PMC8846477 DOI: 10.1128/aac.01125-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022] Open
Abstract
Improving the efficacy of existing antibiotics is a promising strategy for combating antibiotic-resistant/tolerant bacterial pathogens that have become a severe threat to human health. We previously reported that aminoglycoside antibiotics could be dramatically potentiated against stationary-phase Escherichia coli cells under hypoionic shock conditions (i.e., treatment with ion-free solutions), but the underlying molecular mechanism remains unknown. Here, we show that mechanosensitive (MS) channels, a ubiquitous protein family sensing mechanical forces of cell membrane, mediate such hypoionic shock-induced aminoglycoside potentiation. Two-minute treatment under conditions of hypoionic shock (e.g., in pure water) greatly enhances the bactericidal effects of aminoglycosides against both spontaneous and triggered E. coli persisters, numerous strains of Gram-negative pathogens in vitro, and Pseudomonas aeruginosa in mice. Such potentiation is achieved by hypoionic shock-enhanced bacterial uptake of aminoglycosides and is linked to hypoionic shock-induced destabilization of the cytoplasmic membrane in E. coli. Genetic and biochemical analyses reveal that MscS-family channels directly and redundantly mediate aminoglycoside uptake upon hypoionic shock and thus potentiation, with MscL channel showing reduced effect. Molecular docking and site-directed mutagenesis analyses reveal a putative streptomycin-binding pocket in MscS, critical for streptomycin uptake and potentiation. These results suggest that hypoionic shock treatment destabilizes the cytoplasmic membrane and thus changes the membrane tension, which immediately activates MS channels that are able to effectively transport aminoglycosides into the cytoplasm for downstream killing. Our findings reveal the biological effects of hypoionic shock on bacteria and can help to develop novel adjuvants for aminoglycoside potentiation to combat bacterial pathogens via activating MS channels.
Collapse
Affiliation(s)
- Boyan Lv
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Youhui Zeng
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Huaidong Zhang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Zhongyan Li
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Zhaorong Xu
- Fujian Burn Institute, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Yan Wang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Yuanyuan Gao
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Yajuan Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| | - Xinmiao Fu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China
| |
Collapse
|