1
|
Khurana P, Pulicharla R, Brar SK. Occurrence of Imipenem in natural water: Effect of dissolved organic matter and metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177846. [PMID: 39626420 DOI: 10.1016/j.scitotenv.2024.177846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/08/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024]
Abstract
The occurrence of trace antibiotic residues in the environment poses a threat by promoting antibiotic resistance and spreading resistant genes. Recent studies show that these residues interact with metals, forming toxic and persistent antibiotic-metal complexes (AMCs). Investigating the photodegradation of these contaminants in environmental waters is essential to understand their fate and ecotoxicological risk assessment in environmental waters. In this sense, the present work delineates the fate of IMP, a carbapenem antibiotic, in the environmental matrix and studies its interactions with humic acid and metals. The study established that the drug was labile and underwent degradation under light and ambient temperatures. Further, analytical studies with dissolved organic matter (DOM), such as humic acids, established an accelerating effect on antibiotic degradation via indirect photochemical pathways. For instance, for a concentration of 100 mg/L IMP mixed with 20 mg/L HA in volumetric ratios of IMP: HA 1:2, 1:1, and 2:1, the final concentrations of IMP after 24 h were 26.11 mg/L (-73.89 %), 34.44 mg/L (-65.56 %), and 44.22 mg/L (55.78 %), respectively. The higher the humic acid, the faster the degradation of IMP, thereby supporting the photochemical generation of reactive oxygen species (OH•) and subsequent oxidative degeneration of the drug. The interactions with metals, specifically copper, accelerated the degradation kinetics of the drug. The promotion effect was owed to the action of the OH• as the oxidizing agent. Based on the degradation products identified by LC-MS/MS, a scheme of the synergistic action of copper-redox coupling and imipenem, resulting in the oxidative degradation of the drug, was proposed. Understanding the photochemical behavior of antibiotics, and their behavior in the presence of DOM and metal is vital for unravelling their fate and complexity in wastewater.
Collapse
Affiliation(s)
- Pratishtha Khurana
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario, Canada
| | - Rama Pulicharla
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Mhone AL, Muloi DM, Moodley A. Understanding the veterinary antibiotic flow in Malawi: complexities, gaps and needs. Front Vet Sci 2024; 11:1474307. [PMID: 39634763 PMCID: PMC11614805 DOI: 10.3389/fvets.2024.1474307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Veterinary antibiotics are essential for maintaining animal health and welfare, however, small-scale farmers in Malawi face challenges in accessing them due to limited availability, affordability, and long distances to rural drug retailers. Methods This study mapped the veterinary antibiotic distribution chain, examined the governance structure of the chain, and analyzed access and usage practices among stakeholders in Malawi. Data were collected through focus group discussions (n = 15), key informant interviews (n = 6) and individual interviews (n = 189). Results The key stakeholders identified included regulators, local pharmaceutical manufacturers, wholesalers, veterinary clinics, veterinary retail shops, animal health practitioners, and farmers. The distribution of veterinary antibiotics was characterized by both formal and informal pathways for importing and distributing veterinary medicines. Additionally, there were issues with antibiotic mishandling such as improper storage on open shelves in direct sunlight and disposal in pit latrines. There was a marked lack of proper antibiotic dispensation training among veterinary medicine shop attendants, and in terms of regulation, there were gaps in coordination and overlapping mandates among regulatory authorities hindering effective regulation. Discussion Regulatory agencies need to strengthen oversight of veterinary antibiotics, conduct trainings on antibiotic stewardship with various stakeholders, and enhance public-private partnerships to better manage the informal pathways for importing and distributing veterinary medicines. This multi-sectoral approach aims to ensure responsible use and improve the pharmacovigilance of veterinary antibiotics.
Collapse
Affiliation(s)
- Amos Lucky Mhone
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dishon M. Muloi
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Arshnee Moodley
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Ifedinezi OV, Nnaji ND, Anumudu CK, Ekwueme CT, Uhegwu CC, Ihenetu FC, Obioha P, Simon BO, Ezechukwu PS, Onyeaka H. Environmental Antimicrobial Resistance: Implications for Food Safety and Public Health. Antibiotics (Basel) 2024; 13:1087. [PMID: 39596781 PMCID: PMC11591122 DOI: 10.3390/antibiotics13111087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial resistance (AMR) is a serious global health issue, aggravated by antibiotic overuse and misuse in human medicine, animal care, and agriculture. This study looks at the different mechanisms that drive AMR, such as environmental contamination, horizontal gene transfer, and selective pressure, as well as the severe implications of AMR for human and animal health. This study demonstrates the need for concerted efforts across the scientific, healthcare, agricultural, and policy sectors to control the emergence of AMR. Some crucial strategies discussed include developing antimicrobial stewardship (AMS) programs, encouraging targeted narrow-spectrum antibiotic use, and emphasizing the significance of strict regulatory frameworks and surveillance systems, like the Global Antimicrobial Resistance and Use Surveillance System (GLASS) and the Access, Watch, and Reserve (AWaRe) classification. This study also emphasizes the need for national and international action plans in combating AMR and promotes the One Health strategy, which unifies environmental, animal, and human health. This study concludes that preventing the spread of AMR and maintaining the effectiveness of antibiotics for future generations requires a comprehensive, multidisciplinary, and internationally coordinated strategy.
Collapse
Affiliation(s)
| | - Nnabueze Darlington Nnaji
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
- Department of Microbiology, University of Nigeria, Nsukka 410001, Nigeria
| | | | | | | | | | - Promiselynda Obioha
- Microbiology Research Unit, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| | - Blessing Oteta Simon
- Department of Public Health Sciences, National Open University of Nigeria, Abuja 900108, Nigeria
| | | | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
4
|
Batuman O, Britt-Ugartemendia K, Kunwar S, Yilmaz S, Fessler L, Redondo A, Chumachenko K, Chakravarty S, Wade T. The Use and Impact of Antibiotics in Plant Agriculture: A Review. PHYTOPATHOLOGY 2024; 114:885-909. [PMID: 38478738 DOI: 10.1094/phyto-10-23-0357-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Growers have depended on the specificity and efficacy of streptomycin and oxytetracycline as a part of their plant disease arsenal since the middle of the 20th century. With climate change intensifying plant bacterial epidemics, the established success of these antibiotics remains threatened. Our strong reliance on certain antibiotics for devastating diseases eventually gave way to resistance development. Although antibiotics in plant agriculture equal to less than 0.5% of overall antibiotic use in the United States, it is still imperative for humans to continue to monitor usage, environmental residues, and resistance in bacterial populations. This review provides an overview of the history and use, resistance and mitigation, regulation, environmental impact, and economics of antibiotics in plant agriculture. Bacterial issues, such as the ongoing Huanglongbing (citrus greening) epidemic in Florida citrus production, may need antibiotics for adequate control. Therefore, preserving the efficacy of our current antibiotics by utilizing more targeted application methods, such as trunk injection, should be a major focus. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Ozgur Batuman
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Kellee Britt-Ugartemendia
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Sanju Kunwar
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Salih Yilmaz
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Lauren Fessler
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Ana Redondo
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Kseniya Chumachenko
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL
| | - Shourish Chakravarty
- Department of Food and Resource Economics, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Tara Wade
- Department of Food and Resource Economics, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| |
Collapse
|
5
|
Menezes KV, Duarte CEDS, Moreira MG, Moreno TDJC, Pereira VJDS, Ucella-Filho JGM, Otenio MH, Ignacchiti MDC, Resende JA. Enterobacteria in anaerobic digestion of dairy cattle wastewater: Assessing virulence and resistance for one health security. WATER RESEARCH 2024; 252:121192. [PMID: 38309066 DOI: 10.1016/j.watres.2024.121192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
Samples from a dairy cattle waste-fed anaerobic digester were collected across seasons to assess sanitary safety for biofertilizer use. Isolated enterobacteria (suggestive of Escherichia coli) were tested for susceptibility to biocides, antimicrobials, and biofilm-forming capability. Results revealed a decrease in total bacteria, coliforms, and enterobacteria in biofertilizer compared to the effluent. Among 488 isolates, 98.12 % exhibited high biofilm formation. Biofertilizer isolates exhibited a similar biofilm formation capability as effluent isolates in summer, but greater propensity in winter. Resistance to biocides and antimicrobials varied, with tetracycline resistance reaching 19 %. Of the isolates, 25 were multidrug-resistant (MDR), with 64 % resistant to three drugs. Positive correlations were observed between MDR and increased biofilm formation capacity in both samples, while there was negative correlation between MDR and increased biocide resistance. A higher number of MDR bacteria were found in biofertilizer compared to the effluent, revealing the persistence of E. coli resistance, posing challenges to food safety and public health.
Collapse
Affiliation(s)
- Kássia Vidal Menezes
- Graduate Program in Veterinary Sciences, Center for Agricultural Sciences and Engineering - CCAE, Federal University of Espírito Santo - UFES, Alto Universitário, no number, Guararema, Alegre, ES 29500-000, Brazil
| | | | - Myleny Goularte Moreira
- Department of Pharmacy and Nutrition, Federal University of Espírito Santo - UFES, Alegre, ES 29500-000, Brazil
| | | | - Vitor José da Silva Pereira
- Department of Pharmacy and Nutrition, Federal University of Espírito Santo - UFES, Alegre, ES 29500-000, Brazil
| | - João Gilberto Meza Ucella-Filho
- Department of Forestry and Wood Sciences, Federal University of Espírito Santo - UFES, Jerônimo Monteiro, ES 29550-000, Brazil
| | | | | | - Juliana Alves Resende
- Graduate Program in Veterinary Sciences, Center for Agricultural Sciences and Engineering - CCAE, Federal University of Espírito Santo - UFES, Alto Universitário, no number, Guararema, Alegre, ES 29500-000, Brazil; Department of Pharmacy and Nutrition, Federal University of Espírito Santo - UFES, Alegre, ES 29500-000, Brazil.
| |
Collapse
|
6
|
Ding YY, Zhou H, Peng-Deng, Zhang BQ, Zhang ZJ, Wang GH, Zhang SY, Wu ZR, Wang YR, Liu YQ. Antimicrobial activity of natural and semi-synthetic carbazole alkaloids. Eur J Med Chem 2023; 259:115627. [PMID: 37467619 DOI: 10.1016/j.ejmech.2023.115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Since the first natural carbazole alkaloid, murrayanine, was isolated from Mwraya Spreng, carbazole alkaloid derivatives have been widely concerned for their anti-tumor, anti-viral and anti-bacterial activities. In recent decades, a growing body of data suggest that carbazole alkaloids and their derivatives have different biological activities. This is the first comprehensive description of the antifungal and antibacterial activities of carbazole alkaloids in the past decade (2012-2022), including natural and partially synthesized carbazole alkaloids in the past decade. Finally, the challenges and problems faced by this kind of alkaloids are summarized. This paper will be helpful for further exploration of this kind of alkaloids.
Collapse
Affiliation(s)
- Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Han Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Peng-Deng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Bao-Qi Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Guang-Han Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
7
|
Menezes KV, Pimentel BMF, Da Costa JAC, Ferreira NS, Ignacchiti MDC, Resende JA. Virulence factors and antimicrobial resistance of Escherichia coli isolated from commercialized fresh cheese in the south of Espírito Santo. Braz J Microbiol 2023; 54:2063-2071. [PMID: 37261621 PMCID: PMC10484838 DOI: 10.1007/s42770-023-01013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
Cheeses are dairy products that can potentially contain a diverse range of harmful bacteria that could be consumed by humans, including the enteric pathogen Escherichia coli. This study aimed to characterize the presence of total coliforms, assess the antimicrobial susceptibility profiles of the main commercial antimicrobial classes and biocides, and evaluate the ability of 50 E. coli isolates obtained from fresh cheese sold in the southern region of Espírito Santo, Brazil, to produce biofilms. The counts of total coliforms + E. coli obtained averages of (A) 7.22 × 106 CFU/g, (B) 9.35 × 107 CFU/g, and (C) 1.16 × 106 CFU/g for different brands. All isolates were capable of forming biofilms, with 8%, 76%, and 16% of these isolates presenting high, moderate, and low adherence in biofilm formation, respectively. Most strains showed inhibition halos for the biocides chlorhexidine digluconate 2% (16 mm ± 4.34), iodopovidone 10% (7.14 mm ± 0.36), and sodium hypochlorite 2% (7.12 mm ± 0.33). Out of the 50 strains, 21 (42%) were resistant to at least one of the antimicrobials. Regarding the multiple resistance index, 3 (6%) strains were resistant to 3 or more antimicrobial classes. Furthermore, 2 (4%) were extended-spectrum beta-lactamases producers. Resistance to ampicillin and amoxicillin was observed in 20% and 40% of the strains, respectively. In contrast, gentamicin was the most effective antimicrobial, with a sensitivity rate of 100%. The findings indicate that E. coli present in fresh cheese may possess unique physiological characteristics that could be associated with their persistence, virulence, and multidrug resistance. These results raise significant public health concerns since contaminated food can pose risks to consumers' health, emphasizing the importance of reinforcing hygienic-sanitary controls at all stages of production.
Collapse
Affiliation(s)
- Kássia Vidal Menezes
- Graduate Program in Veterinary Sciences, Federal University of Espírito Santo (UFES), Alegre, ES, Brazil
| | - Bruna Maria Fia Pimentel
- Department of Pharmacy and Nutrition, Federal University of Espirito Santo (UFES), Alto Universitário; S/N, Alegre, ES, 29500-000, Brazil
| | - Joyce Aparecida Corrêa Da Costa
- Department of Pharmacy and Nutrition, Federal University of Espirito Santo (UFES), Alto Universitário; S/N, Alegre, ES, 29500-000, Brazil
| | - Nicolly Soares Ferreira
- Graduate Program in Veterinary Sciences, Federal University of Espírito Santo (UFES), Alegre, ES, Brazil
| | - Mariana Drummond Costa Ignacchiti
- Department of Pharmacy and Nutrition, Federal University of Espirito Santo (UFES), Alto Universitário; S/N, Alegre, ES, 29500-000, Brazil
| | - Juliana Alves Resende
- Graduate Program in Veterinary Sciences, Federal University of Espírito Santo (UFES), Alegre, ES, Brazil.
- Department of Pharmacy and Nutrition, Federal University of Espirito Santo (UFES), Alto Universitário; S/N, Alegre, ES, 29500-000, Brazil.
| |
Collapse
|
8
|
Huo X, Wang Z, Xiao X, Yang C, Su J. Oral Administration of Nanopeptide CMCS-20H Conspicuously Boosts Immunity and Precautionary Effect Against Bacterial Infection in Fish. Front Immunol 2022; 12:811616. [PMID: 35087530 PMCID: PMC8786714 DOI: 10.3389/fimmu.2021.811616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Massive mortalities caused by bacterial infections in intensive aquaculture result in serious economic losses. In this study, a novel antimicrobial peptide gcIFN-20H was efficiently expressed in Pichia pastoris (GS115) and loaded on carboxylmethyl chitosan (CMCS) to prepare CMCS-20H nanoparticles. Through physical characterization assays (TEM, DLS, BCA, and Raman) and biological activity tests (antimicrobial activity and cytotoxicity), CMCS-20H nanopeptide was verified to be spherical nanoparticles with sustained release, antimicrobial activity, and negligible toxicity. CMCS-20H nanoparticles are more resistant to intestinal degradation than unloaded gcIFN-20H by indirect immunofluorescence assay. Oral administration was then carried out for 42 days. Complement C3 content, lysozyme, and total superoxide dismutase activities are highest in CMCS-20H group by serum biochemistry index assays. After challenge with Aeromonas hydrophila, the survival rate in CMCS-20H group is highest (46%), which is 64% higher than the control group (28%). Meanwhile, the tissue bacterial loads (intestine, spleen, head kidney, trunk kidney, hepatopancreas, muscle, and blood) in the CMCS-20H group are significantly lower than other groups. By PAS staining analysis, the number of intestinal villi goblet cells and the thickness of mucin in the CMCS-20H group obviously increased. CMCS-20H effectively enhances mRNA expressions of some important immune genes (IL-1β, IL-6, TNF-α, IL-2, IFN-γ2, and IgM). The minimal tissue lesions (Intestine, spleen, and trunk kidney) were seen in the CMCS-20H group by histopathological examination. 16S rRNA sequencing showed that oral CMCS-20H maintains the intestinal microbiome homeostasis in bacterial infection. The results indicate that the novel nanopeptide CMCS-20H as the immunopotentiator can remarkably boost fish immunity and precautionary effect by oral administration and address the theoretical mechanisms and insights into the promising application prospect in aquaculture.
Collapse
Affiliation(s)
- Xingchen Huo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Zhensheng Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xun Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| |
Collapse
|