1
|
Zhang Q, Pu Q, Hao Z, Liu J, Zhang K, Meng B, Feng X. Warming inhibits Hg II methylation but stimulates methylmercury demethylation in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172832. [PMID: 38688367 DOI: 10.1016/j.scitotenv.2024.172832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Inorganic mercury (HgII) can be transformed into neurotoxic methylmercury (MeHg) by microorganisms in paddy soils, and the subsequent accumulation in rice grains poses an exposure risk for human health. Warming as an important manifestation of climate change, changes the composition and structure of microbial communities, and regulates the biogeochemical cycles of Hg in natural environments. However, the response of specific HgII methylation/demethylation to the changes in microbial communities caused by warming remain unclear. Here, nationwide sampling of rice paddy soils and a temperature-adjusted incubation experiment coupled with isotope labeling technique (202HgII and Me198Hg) were conducted to investigate the effects of temperature on HgII methylation, MeHg demethylation, and microbial mechanisms in paddy soils along Hg gradients. We showed that increasing temperature significantly inhibited HgII methylation but promoted MeHg demethylation. The reduction in the relative abundance of Hg-methylating microorganisms and increase in the relative abundance of MeHg-demethylating microorganisms are the likely reasons. Consequently, the net Hg methylation production potential in rice paddy soils was largely inhibited under the increasing temperature. Collectively, our findings offer insights into the decrease in net MeHg production potential associated with increasing temperature and highlight the need for further evaluation of climate change for its potential effect on Hg transformation in Hg-sensitive ecosystems.
Collapse
Affiliation(s)
- Qianshuo Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhengdong Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Kun Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Wang YL, Ikuma K, Brooks SC, Varonka MS, Deonarine A. Non-mercury methylating microbial taxa are integral to understanding links between mercury methylation and elemental cycles in marine and freshwater sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123573. [PMID: 38365074 DOI: 10.1016/j.envpol.2024.123573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
The goal of this study was to explore the role of non-mercury (Hg) methylating taxa in mercury methylation and to identify potential links between elemental cycles and Hg methylation. Statistical approaches were utilized to investigate the microbial community and biochemical functions in relation to methylmercury (MeHg) concentrations in marine and freshwater sediments. Sediments were collected from the methylation zone (top 15 cm) in four Hg-contaminated sites. Both abiotic (e.g., sulfate, sulfide, iron, salinity, total organic matter, etc.) and biotic factors (e.g., hgcA, abundances of methylating and non-methylating taxa) were quantified. Random forest and stepwise regression were performed to assess whether non-methylating taxa were significantly associated with MeHg concentration. Co-occurrence and functional network analyses were constructed to explore associations between taxa by examining microbial community structure, composition, and biochemical functions across sites. Regression analysis showed that approximately 80% of the variability in sediment MeHg concentration was predicted by total mercury concentration, the abundances of Hg methylating taxa, and the abundances of the non-Hg methylating taxa. The co-occurrence networks identified Paludibacteraceae and Syntrophorhabdaceae as keystone non Hg methylating taxa in multiple sites, indicating the potential for syntrophic interactions with Hg methylators. Strong associations were also observed between methanogens and sulfate-reducing bacteria, which were likely symbiotic associations. The functional network results suggested that non-Hg methylating taxa play important roles in sulfur respiration, nitrogen respiration, and the carbon metabolism-related functions methylotrophy, methanotrophy, and chemoheterotrophy. Interestingly, keystone functions varied by site and did not involve carbon- and sulfur-related functions only. Our findings highlight associations between methylating and non-methylating taxa and sulfur, carbon, and nitrogen cycles in sediment methylation zones, with implications for predicting and understanding the impact of climate and land/sea use changes on Hg methylation.
Collapse
Affiliation(s)
- Yong-Li Wang
- Department of Civil, Environmental & Construction Engineering, Texas Tech University, Lubbock, TX, United States
| | - Kaoru Ikuma
- Department of Civil, Construction & Environmental Engineering, Iowa State University, Ames, IA, United States
| | - Scott C Brooks
- Oak Ridge National Laboratory, Environmental Science Division, Oak Ridge, TN, United States
| | - Matthew S Varonka
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA, United States
| | - Amrika Deonarine
- Department of Civil, Environmental & Construction Engineering, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
3
|
Argiroff WA, Carrell AA, Klingeman DM, Dove NC, Muchero W, Veach AM, Wahl T, Lebreux SJ, Webb AB, Peyton K, Schadt CW, Cregger MA. Seasonality and longer-term development generate temporal dynamics in the Populus microbiome. mSystems 2024; 9:e0088623. [PMID: 38421171 PMCID: PMC10949431 DOI: 10.1128/msystems.00886-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Temporal variation in community composition is central to our understanding of the assembly and functioning of microbial communities, yet the controls over temporal dynamics for microbiomes of long-lived plants, such as trees, remain unclear. Temporal variation in tree microbiomes could arise primarily from seasonal (i.e., intra-annual) fluctuations in community composition or from longer-term changes across years as host plants age. To test these alternatives, we experimentally isolated temporal variation in plant microbiome composition using a common garden and clonally propagated plants, and we used amplicon sequencing to characterize bacterial/archaeal and fungal communities in the leaf endosphere, root endosphere, and rhizosphere of two Populus spp. over four seasons across two consecutive years. Microbial community composition differed among seasons and years (which accounted for up to 21% of the variation in microbial community composition) and was correlated with seasonal dissimilarity in climatic conditions. However, microbial community dissimilarity was also positively correlated with time, reflecting longer-term compositional shifts as host trees aged. Together, our findings demonstrate that temporal patterns in tree microbiomes arise from both seasonal fluctuations and longer-term changes, which interact to generate unique seasonal patterns each year. In addition to shedding light on two important controls over the assembly of plant microbiomes, our results also suggest future studies of tree microbiomes should account for background temporal dynamics when testing the drivers of spatial patterns in microbial community composition and temporal responses of plant microbiomes to environmental change.IMPORTANCEMicrobiomes are integral to the health of host plants, but we have a limited understanding of the factors that control how the composition of plant microbiomes changes over time. Especially little is known about the microbiome of long-lived trees, relative to annual and non-woody plants. We tested how tree microbiomes changed between seasons and years in poplar (genus Populus), which are widespread and ecologically important tree species that also serve as important biofuel feedstocks. We found the composition of bacterial, archaeal, and fungal communities differed among seasons, but these seasonal differences depended on year. This dependence was driven by longer-term changes in microbial composition as host trees developed across consecutive years. Our findings suggest that temporal variation in tree microbiomes is driven by both seasonal fluctuations and longer-term (i.e., multiyear) development.
Collapse
Affiliation(s)
- William A. Argiroff
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Alyssa A. Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Dawn M. Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Nicholas C. Dove
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Allison M. Veach
- Department of Integrative Biology, The University of Texas, San Antonio, Texas, USA
| | - Toni Wahl
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Steven J. Lebreux
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Amber B. Webb
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Kellie Peyton
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Christopher W. Schadt
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Melissa A. Cregger
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
4
|
Monteiro LC, Vieira LCG, Bernardi JVE, Bastos WR, de Souza JPR, Recktenvald MCNDN, Nery AFDC, Oliveira IADS, Cabral CDS, Moraes LDC, Filomeno CL, de Souza JR. Local and landscape factors influencing mercury distribution in water, bottom sediment, and biota from lakes of the Araguaia River floodplain, Central Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168336. [PMID: 37949140 DOI: 10.1016/j.scitotenv.2023.168336] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Mercury (Hg) is a chemical element widely present in the Earth's crust. However, its high toxicity and ability to accumulate in organisms and biomagnify through food chains characterize it as a global pollutant of primary control. We assessed total mercury concentrations ([THg]) in abiotic and biotic compartments from 98 floodplain lakes associated with the Araguaia River and six tributaries (Midwest Brazil). [THg] quantification in water was performed by cold vapor atomic fluorescence spectroscopy. [THg] in bottom sediment was assessed using cold vapor generation atomic absorption spectrophotometry, while [THg] in macrophyte, periphyton, and plankton were quantified by thermal decomposition atomic absorption spectrometry. Hotspots of [THg] in water, bottom sediment, and macrophytes were determined in areas impacted by pasture and urban areas. In contrast, hotspots of [THg] in periphyton and forest fires were determined in preserved areas downstream. [THg] in plankton did not show a clear spatial distribution pattern. The mean bioaccumulation factor order was plankton (2.3 ± 1.8) > periphyton (1.3 ± 0.9) > macrophytes (0.7 ± 0.4) (KW = 55.09, p < 0.0001). Higher [THg] in water and bottom sediment were associated with high pH (R2adj = 0.118, p = 0.004) and organic matter (R2adj = 0.244, p < 0.0001). [THg] in macrophytes were positively influenced by [THg] in water (R2adj = 0.063, p = 0.024) and sediment (R2adj = 0.105, p = 0.007). [THg] in periphyton are positively related to forest fires (R2adj = 0.156, p = 0.009) and [THg] in macrophytes (R2adj = 0.061, p = 0.03) and negatively related to lake depth (R2adj = 0.045, p = 0.02). The transfer of Hg from water and sediment to the biota is limited. However, the progressive increase of the bioaccumulation factor between macrophyte, periphyton, and plankton may indicate Hg biomagnification along the food chain of the Araguaia River floodplain.
Collapse
Affiliation(s)
- Lucas Cabrera Monteiro
- Programa de Pós-Graduação em Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil.
| | - Ludgero Cardoso Galli Vieira
- Núcleo de Estudos e Pesquisas Ambientais e Limnológicas, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil
| | - José Vicente Elias Bernardi
- Laboratório de Geoestatística e Geodésia, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil
| | | | | | | | | | | | - Cássio da Silva Cabral
- Laboratório de Biogeoquímica Ambiental, Universidade Federal de Rondônia, Porto Velho, RO, Brazil
| | - Lilian de Castro Moraes
- Programa de Pós-Graduação em Ciências Ambientais, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil
| | - Cleber Lopes Filomeno
- Central Análítica, Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil
| | - Jurandir Rodrigues de Souza
- Laboratório de Química Analítica e Ambiental, Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil
| |
Collapse
|
5
|
Ali S, Baloch SB, Bernas J, Konvalina P, Onyebuchi EF, Naveed M, Ali H, Jamali ZH, Nezhad MTK, Mustafa A. Phytotoxicity of radionuclides: A review of sources, impacts and remediation strategies. ENVIRONMENTAL RESEARCH 2024; 240:117479. [PMID: 37884073 DOI: 10.1016/j.envres.2023.117479] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/01/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Various anthropogenic activities and natural sources contribute to the presence of radioactive materials in the environment, posing a serious threat to phytotoxicity. Contamination of soil and water by radioactive isotopes degrades the environmental quality and biodiversity. They persist in soils for a considerable amount of time and disturb the fauna and flora of any affected area. Hence, their removal from the contaminated medium is inevitable to prevent their entry into the food chain and the organisms at higher levels of the food chain. Physicochemical methods for radioactive element remediation are effective; however, they are not eco-friendly, can be expensive and impractical for large-scale remediation. Contrastingly, different bioremediation approaches, such as phytoremediation using appropriate plant species for removing the radionuclides from the polluted sites, and microbe-based remediation, represent promising alternatives for cleanup. In this review, sources of radionuclides in soil as well as their hazardous impacts on plants are discussed. Moreover, various conventional physicochemical approaches used for remediation discussed in detail. Similarly, the effectiveness and superiority of various bioremediation approaches, such as phytoremediation and microbe-based remediation, over traditional approaches have been explained in detail. In the end, future perspectives related to enhancing the efficiency of the phytoremediation process have been elaborated.
Collapse
Affiliation(s)
- Shahzaib Ali
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Sadia Babar Baloch
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Jaroslav Bernas
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic.
| | - Petr Konvalina
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Eze Festus Onyebuchi
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Hassan Ali
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zameer Hussain Jamali
- College of Environmental Science, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Mohammad Tahsin Karimi Nezhad
- Department of Forest Ecology, The Silva Tarouca Research Institute for Landscape and Ornamental 13 Gardening, Lidicka, 25/27, Brno, 60200, Czech Republic
| | - Adnan Mustafa
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences Guangzhou, 510650, China.
| |
Collapse
|
6
|
Zhou XQ, Qu XM, Yang Z, Zhao J, Hao YY, Feng J, Huang Q, Liu YR. Increased water inputs fuel microbial mercury methylation in upland soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129578. [PMID: 35853337 DOI: 10.1016/j.jhazmat.2022.129578] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) can be converted to neurotoxic methylmercury (MeHg) by certain microbes typically in anaerobic environments, threatening human health due to its bioaccumulation in food webs. However, it is unclear whether and how Hg can be methylated in legacy aerobic uplands with increasing water. Here, we conducted a series of incubation experiments to investigate the effects of increased water content on MeHg production in two typical upland soils (i.e., long-term and short-term use). Results showed that marked MeHg production occurred in water-saturated upland soils, which was strongly correlated with the proportions of significantly stimulated Hg methylating taxon (i.e., Geobacter). Elevated temperature further enhanced MeHg production by blooming proportions of typical Hg methylators (i.e., Clostridium, Acetonema, and Geobacter). Water saturation could also enhance microbial Hg methylation by facilitating microbial syntrophy between non-Hg methylators and Hg methylators. Taken together, the present work suggests that uplands could turn into a potential MeHg reservoir in response to water inputs resulting from rainfall or anthropogenic irrigation.
Collapse
Affiliation(s)
- Xin-Quan Zhou
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Min Qu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziming Yang
- Department of Chemistry, Oakland University, Rochester, MI 48309, United States
| | - Jiating Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Yun-Yun Hao
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiao Feng
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Yu RQ, Barkay T. Microbial mercury transformations: Molecules, functions and organisms. ADVANCES IN APPLIED MICROBIOLOGY 2022; 118:31-90. [PMID: 35461663 DOI: 10.1016/bs.aambs.2022.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mercury (Hg) methylation, methylmercury (MeHg) demethylation, and inorganic redox transformations of Hg are microbe-mediating processes that determine the fate and cycling of Hg and MeHg in many environments, and by doing so influence the health of humans and wild life. The discovery of the Hg methylation genes, hgcAB, in the last decade together with advances in high throughput and genome sequencing methods, have resulted in an expanded appreciation of the diversity of Hg methylating microbes. This review aims to describe experimentally confirmed and recently discovered hgcAB gene-carrying Hg methylating microbes; phylogenetic and taxonomic analyses are presented. In addition, the current knowledge on transformation mechanisms, the organisms that carry them out, and the impact of environmental parameters on Hg methylation, MeHg demethylation, and inorganic Hg reduction and oxidation is summarized. This knowledge provides a foundation for future action toward mitigating the impact of environmental Hg pollution.
Collapse
Affiliation(s)
- Ri-Qing Yu
- Department of Biology, University of Texas at Tyler, Tyler, TX, United States.
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|