1
|
Jimoh RO, Smith CR, Blazer VS, Corrales J, Hogan NS, Rodgers ML, Wise C, Sellin Jeffries MK. Fishy factors: recognizing biological variation and its implications for fish immuno(eco)toxicology research. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:872-879. [PMID: 39992296 PMCID: PMC11947380 DOI: 10.1093/etojnl/vgae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 02/25/2025]
Affiliation(s)
- Rashidat O Jimoh
- Department of Biology, Texas Christian University, Fort Worth, TX, United States
| | - Cheyenne R Smith
- Eastern Ecological Science Center -Leetown Research Laboratory, U.S. Geological Survey, Kearneysville, WV, United States
| | - Vicki S Blazer
- Eastern Ecological Science Center -Leetown Research Laboratory, U.S. Geological Survey, Kearneysville, WV, United States
| | - Jone Corrales
- Office of Chemical Safety and Pollution Prevention, U.S. Environmental Protection Agency, Washington, DC, United States
| | - Natacha S Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Canada
| | - Maria L Rodgers
- Department of Biological Sciences, North Carolina State University, Center for Marine Sciences and Technology, Morehead City, NC, United States
| | - Catherine Wise
- Department of Biology, Texas Christian University, Fort Worth, TX, United States
| | | |
Collapse
|
2
|
Lee YH, Kim MS, Lee Y, Wang C, Yun SC, Lee JS. Synergistic adverse effects of microfibers and freshwater acidification on host-microbiota interactions in the water flea Daphnia magna. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132026. [PMID: 37473567 DOI: 10.1016/j.jhazmat.2023.132026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
Microfibers are the most common type of microplastics in freshwater environments. Anthropogenic climate stressors, such as freshwater acidification (FA), can interact with plastic pollution to disrupt freshwater ecosystems. However, the underlying mechanisms responsible for the interactive effects of microfibers and FA on aquatic organisms remain poorly understood. In this study, we investigated individual Daphnia magna-microbiota interactions affected by interactions between microfibers and FA (MFA). We found that the accumulated amount of microfibers in pH-treatment groups was significantly higher than in the control groups, resulting in negative consequences on reproduction, growth, and sex ratio. We also observed that MFA interactions induced immunity- and reproduction-related biological processes. In particular, the abundance of pathogenic bacteria increased only in MFA groups, indicating that MFA interactions can cause intestinal damage. Our integrated analysis of microbiomes and host transcriptomes revealed that synergistic adverse effects of MFAs are closely related to changes in microbial communities, suggesting that D. magna fitness and the microbial community are causally linked. These finding may help elucidate the toxicity mechanisms governing the responses of D. magna to microfibers and acidification interactions, and to host-microbiome-environment interactions.
Collapse
Affiliation(s)
- Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chuxin Wang
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Seong Chan Yun
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
3
|
Reinoso S, Gutiérrez MS, Reyes-Jara A, Toro M, García K, Reyes G, Argüello-Guevara W, Bohórquez-Cruz M, Sonnenholzner S, Navarrete P. Feed Regime Slightly Modifies the Bacterial but Not the Fungal Communities in the Intestinal Mucosal Microbiota of Cobia Fish ( Rachycentron canadum). Microorganisms 2023; 11:2315. [PMID: 37764158 PMCID: PMC10535204 DOI: 10.3390/microorganisms11092315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The bacterial community of the intestinal microbiota influences many host functions, and similar effects have been recently reported for the fungal community (mycobiota). Cobia is a tropical fish that has been studied for its potential in marine aquaculture. However, the study of its bacterial community has been underreported and the mycobiota has not been investigated. We analyzed the gut bacterial and fungal profile present in the intestinal mucosa of reared adult cobias fed two diets (frozen fish pieces (FFPs) and formulated feed (FF)) for 4 months by sequencing the 16S rRNA (V3-V4) and internal transcribed spacer-2 (ITS2) regions using Illumina NovaSeq 6000. No significant differences in the alpha diversity of the bacterial community were observed, which was dominated by the phyla Proteobacteria (~96%) and Firmicutes (~1%). Cobia fed FF showed higher abundance of 10 genera, mainly UCG-002 (Family Oscillospiraceae) and Faecalibacterium, compared to cobia fed FFPs, which showed higher abundance of 7 genera, mainly Methylobacterium-Methylorubrum and Cutibacterium. The inferred bacterial functions were related to metabolism, environmental information processing and cellular processes; and no differences were found between diets. In mycobiota, no differences were observed in the diversity and composition of cobia fed the two diets. The mycobiota was dominated by the phyla Ascomycota (~88%) and Basidiomycota (~11%). This is the first study to describe the gut bacterial and fungal communities in cobia reared under captive conditions and fed on different diets and to identify the genus Ascobulus as a new member of the core fish mycobiota.
Collapse
Affiliation(s)
- Samira Reinoso
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Avenida El Libano 5524, Macul, Santiago 7830490, Chile; (M.S.G.); (A.R.-J.); (M.T.)
- Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Guayaquil 090211, Ecuador; (G.R.); (W.A.-G.); (M.B.-C.); (S.S.)
| | - María Soledad Gutiérrez
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Avenida El Libano 5524, Macul, Santiago 7830490, Chile; (M.S.G.); (A.R.-J.); (M.T.)
| | - Angélica Reyes-Jara
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Avenida El Libano 5524, Macul, Santiago 7830490, Chile; (M.S.G.); (A.R.-J.); (M.T.)
- Millenium Institute Center for Genome Regulation (CRG), Santiago 8331150, Chile
| | - Magaly Toro
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Avenida El Libano 5524, Macul, Santiago 7830490, Chile; (M.S.G.); (A.R.-J.); (M.T.)
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, MD 20910, USA
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8900000, Chile;
| | - Guillermo Reyes
- Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Guayaquil 090211, Ecuador; (G.R.); (W.A.-G.); (M.B.-C.); (S.S.)
| | - Wilfrido Argüello-Guevara
- Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Guayaquil 090211, Ecuador; (G.R.); (W.A.-G.); (M.B.-C.); (S.S.)
- Facultad de Ingeniería Marítima y Ciencias del Mar, FIMCM, Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Guayaquil 090211, Ecuador
| | - Milton Bohórquez-Cruz
- Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Guayaquil 090211, Ecuador; (G.R.); (W.A.-G.); (M.B.-C.); (S.S.)
| | - Stanislaus Sonnenholzner
- Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Guayaquil 090211, Ecuador; (G.R.); (W.A.-G.); (M.B.-C.); (S.S.)
- Facultad de Ingeniería Marítima y Ciencias del Mar, FIMCM, Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Guayaquil 090211, Ecuador
| | - Paola Navarrete
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Avenida El Libano 5524, Macul, Santiago 7830490, Chile; (M.S.G.); (A.R.-J.); (M.T.)
| |
Collapse
|
4
|
Sanahuja I, Fernandez-Alacid L, Torrecillas S, Ruiz A, Vallejos-Vidal E, Firmino JP, Reyes-Lopez FE, Tort L, Tovar-Ramirez D, Ibarz A, Gisbert E. Dietary Debaryomyces hansenii promotes skin and skin mucus defensive capacities in a marine fish model. Front Immunol 2023; 14:1247199. [PMID: 37711618 PMCID: PMC10499179 DOI: 10.3389/fimmu.2023.1247199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023] Open
Abstract
The present study explores the effects of two supplementation levels of Debaryomyces hansenii (1.1% and 2.2%) as a probiotic in a reference low fish meal-based diet on the skin mucosal tissue in Sparus aurata. This study includes the evaluation of fish performance coupled with a holistic study of the skin mucosa: i) a transcriptomic study of the skin tissue, and ii) the evaluation of its secreted mucus both in terms of skin mucosal-associated biomarkers and its defensive capacity by means of co-culture analysis with two pathogenic bacteria. Results showed that after 70 days of diet administration, fish fed the diet supplemented with D. hansenii at 1.1% presented increased somatic growth and a better feed conversion ratio, compared to fish fed the control diet. In contrast, fish fed the diet including 2.2% of the probiotic presented intermediate values. Regarding gene regulation, the probiotic administration at 1.1% resulted in 712 differentially expressed genes (DEGs), among which 53.4% and 46.6% were up- and down-regulated, respectively. In particular, D. hansenii modulated some skin biological processes related to immunity and metabolism. Specifically, D. hansenii administration induced a strong modulation of some immune biological-related processes (61 DEGs), mainly involved in B- and T-cell regulatory pathways. Furthermore, dietary D. hansenii promoted the skin barrier function by the upregulation of anchoring junction genes (23 DEGs), which reinforces the physical defense against potential skin damage. In contrast, the skin showed modulated genes related to extracellular exosome and membrane organization (50 DEGs). This modulated functioning is of great interest, particularly in relation to the increased skin mucus defensive capacity observed in the bacterial co-culture in vitro trials, which could be related to the increased modulation and exudation of the innate immune components from the skin cells into the mucus. In summary, the modulation of innate immune parameters coupled with increased skin barrier function and cell trafficking potentiates the skin's physical barrier and mucus defensive capacity, while maintaining the skin mucosa's homeostatic immune and metabolic status. These findings confirmed the advantages of D. hansenii supplementation in low fish meal-based diets, demonstrating the probiotic benefits on cultured marine species.
Collapse
Affiliation(s)
- Ignasi Sanahuja
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, Spain
| | - Laura Fernandez-Alacid
- Department of Cell Biology, Physiology, and Immunology, University of Barcelona, Barcelona, Spain
| | - Silvia Torrecillas
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, Spain
| | - Alberto Ruiz
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, Spain
| | - Eva Vallejos-Vidal
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Joana P. Firmino
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, Spain
| | | | - Lluis Tort
- Department of Cell Biology, Physiology, and Immunology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Antoni Ibarz
- Department of Cell Biology, Physiology, and Immunology, University of Barcelona, Barcelona, Spain
| | - Enric Gisbert
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, Spain
| |
Collapse
|
5
|
Sanahuja I, Ruiz A, Firmino JP, Reyes-López FE, Ortiz-Delgado JB, Vallejos-Vidal E, Tort L, Tovar-Ramírez D, Cerezo IM, Moriñigo MA, Sarasquete C, Gisbert E. Debaryomyces hansenii supplementation in low fish meal diets promotes growth, modulates microbiota and enhances intestinal condition in juvenile marine fish. J Anim Sci Biotechnol 2023; 14:90. [PMID: 37422657 DOI: 10.1186/s40104-023-00895-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/11/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND The development of a sustainable business model with social acceptance, makes necessary to develop new strategies to guarantee the growth, health, and well-being of farmed animals. Debaryomyces hansenii is a yeast species that can be used as a probiotic in aquaculture due to its capacity to i) promote cell proliferation and differentiation, ii) have immunostimulatory effects, iii) modulate gut microbiota, and/or iv) enhance the digestive function. To provide inside into the effects of D. hansenii on juveniles of gilthead seabream (Sparus aurata) condition, we integrated the evaluation of the main key performance indicators coupled with the integrative analysis of the intestine condition, through histological and microbiota state, and its transcriptomic profiling. RESULTS After 70 days of a nutritional trial in which a diet with low levels of fishmeal (7%) was supplemented with 1.1% of D. hansenii (17.2 × 105 CFU), an increase of ca. 12% in somatic growth was observed together with an improvement in feed conversion in fish fed a yeast-supplemented diet. In terms of intestinal condition, this probiotic modulated gut microbiota without affecting the intestine cell organization, whereas an increase in the staining intensity of mucins rich in carboxylated and weakly sulphated glycoconjugates coupled with changes in the affinity for certain lectins were noted in goblet cells. Changes in microbiota were characterized by the reduction in abundance of several groups of Proteobacteria, especially those characterized as opportunistic groups. The microarrays-based transcriptomic analysis found 232 differential expressed genes in the anterior-mid intestine of S. aurata, that were mostly related to metabolic, antioxidant, immune, and symbiotic processes. CONCLUSIONS Dietary administration of D. hansenii enhanced somatic growth and improved feed efficiency parameters, results that were coupled to an improvement of intestinal condition as histochemical and transcriptomic tools indicated. This probiotic yeast stimulated host-microbiota interactions without altering the intestinal cell organization nor generating dysbiosis, which demonstrated its safety as a feed additive. At the transcriptomic level, D. hansenii promoted metabolic pathways, mainly protein-related, sphingolipid, and thymidylate pathways, in addition to enhance antioxidant-related intestinal mechanisms, and to regulate sentinel immune processes, potentiating the defensive capacity meanwhile maintaining the homeostatic status of the intestine.
Collapse
Affiliation(s)
- Ignasi Sanahuja
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, 43540, Spain
| | - Alberto Ruiz
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, 43540, Spain
| | - Joana P Firmino
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, 43540, Spain
| | - Felipe E Reyes-López
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | - Juan B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avda. República Saharaui nº 2, Campus Universitario Río San Pedro, Puerto Real, Cádiz, 11510, Spain
| | - Eva Vallejos-Vidal
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Lluis Tort
- Department of Cell Biology, Physiology, and Immunology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Isabel M Cerezo
- Department of Microbiology, Instituto de Biotecnología Y Desarrollo Azul (IBYDA), Faculty of Sciences, University of Malaga, 29010, Malaga, Spain
- SCBI, Bioinformatic Unit, University of Malaga, 29590, Malaga, Spain
| | - Miguel A Moriñigo
- Department of Microbiology, Instituto de Biotecnología Y Desarrollo Azul (IBYDA), Faculty of Sciences, University of Malaga, 29010, Malaga, Spain
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avda. República Saharaui nº 2, Campus Universitario Río San Pedro, Puerto Real, Cádiz, 11510, Spain
| | - Enric Gisbert
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, 43540, Spain.
| |
Collapse
|
6
|
Selection of Autochthonous Yeasts Isolated from the Intestinal Tracts of Cobia Fish ( Rachycentron canadum) with Probiotic Potential. J Fungi (Basel) 2023; 9:jof9020274. [PMID: 36836388 PMCID: PMC9966584 DOI: 10.3390/jof9020274] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Some yeast strains have been proposed as probiotics to improve the health of cultured fish. Cobia is a tropical benthopelagic fish species with potential for marine aquaculture; however, one of the main limitations to its large-scale production is the high mortality of fish larvae. In this study, we evaluated the probiotic potential of autochthonous yeasts from the intestines of cobia. Thirty-nine yeast isolates were recovered from the intestinal mucosa of 37 adult healthy cobia by culture methods. Yeasts were identified by sequencing of the ITS and D1/D2 regions of the 28S rRNA gene and typed by RAPD-PCR using the M13 primer. Yeast strains with unique RAPD patterns were characterized in terms of their cell biomass production ability; anti-Vibrio, enzymatic, and hemolytic activity; biofilm production; hydrophobicity; autoaggregation; polyamine production; safety; and protection of cobia larvae against saline stress. Candida haemuloni C27 and Debaryomyces hansenii C10 and C28 were selected as potential probiotics. They did not affect the survival of larvae and showed biomass production >1 g L-1, hydrophobicity >41.47%, hemolytic activity γ, and activity in more than 8 hydrolytic enzymes. The results suggest that the selected yeast strains could be considered as potential probiotic candidates and should be evaluated in cobia larvae.
Collapse
|
7
|
Louvado A, Castro C, Silva DAM, Oliveira V, Conceição LEC, Cleary DFR, Gomes NCM. Assessing the Effects of Rotifer Feed Enrichments on Turbot ( Scophthalmus maximus) Larvae and Post-Larvae Gut-Associated Bacterial Communities. Microorganisms 2023; 11:microorganisms11020520. [PMID: 36838485 PMCID: PMC9962078 DOI: 10.3390/microorganisms11020520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Live feed enrichments are often used in fish larvicultures as an optimized source of essential nutrients to improve larval growth and survival. In addition to this, they may also play an important role in structuring larval-associated microbial communities and may help improve their resistance to diseases. However, there is limited information available on how larval microbial communities and larviculture water are influenced by different live feed enrichments. In the present study, we investigated the effects of two commercial rotifer enrichments (ER) on turbot (Scophthalmus maximus) larval and post-larval gut-associated bacterial communities during larviculture production. We evaluated their effects on bacterial populations related to known pathogens and beneficial bacteria and their potential influence on the composition of bacterioplankton communities during larval rearing. High-throughput 16S rRNA gene sequencing was used to assess the effects of different rotifer enrichments (ER1 and ER2) on the structural diversity of bacterial communities of the whole turbot larvae 10 days after hatching (DAH), the post-larval gut 30 DAH, and the larviculture water. Our results showed that different rotifer feed enrichments were associated with significant differences in bacterial composition of turbot larvae 10 DAH, but not with the composition of larval gut communities 30 DAH or bacterioplankton communities 10 and 30 DAH. However, a more in-depth taxonomic analysis showed that there were significant differences in the abundance of Vibrionales in both 10 DAH larvae and in the 30 DAH post-larval gut fed different RE diets. Interestingly, the ER1 diet had a higher relative abundance of specific amplicon sequence variants (ASVs) related to potential Vibrio-antagonists belonging to the Roseobacter clade (e.g., Phaeobacter and Ruegeria at 10 DAH and Sulfitobacter at 30 DAH). In line with this, the diet was also associated with a lower relative abundance of Vibrio and a lower mortality. These results suggest that rotifer diets can affect colonization by Vibrio members in the guts of post-larval turbot. Overall, this study indicates that live feed enrichments can have modulatory effects on fish bacterial communities during the early stages of development, which includes the relative abundances of pathogenic and antagonist taxa in larviculture systems.
Collapse
Affiliation(s)
- Antonio Louvado
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carolina Castro
- Flatlantic—Actividades Piscícolas, SA 3070-732 Praia de Mira, Portugal
| | - Davide A. M. Silva
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vanessa Oliveira
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Daniel F. R. Cleary
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Newton C. M. Gomes
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
8
|
Sadeghi A, Ebrahimi M, Shahryari S, Kharazmi MS, Jafari SM. Food applications of probiotic yeasts; focusing on their techno-functional, postbiotic and protective capabilities. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Zhong X, Li J, Lu F, Zhang J, Guo L. Application of zebrafish in the study of the gut microbiome. Animal Model Exp Med 2022; 5:323-336. [PMID: 35415967 PMCID: PMC9434591 DOI: 10.1002/ame2.12227] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
Zebrafish (Danio rerio) have attracted much attention over the past decade as a reliable model for gut microbiome research. Owing to their low cost, strong genetic and development coherence, efficient preparation of germ-free (GF) larvae, availability in high-throughput chemical screening, and fitness for intravital imaging in vivo, zebrafish have been extensively used to investigate microbiome-host interactions and evaluate the toxicity of environmental pollutants. In this review, the advantages and disadvantages of zebrafish for studying the role of the gut microbiome compared with warm-blooded animal models are first summarized. Then, the roles of zebrafish gut microbiome on host development, metabolic pathways, gut-brain axis, and immune disorders and responses are addressed. Furthermore, their applications for the toxicological assessment of aquatic environmental pollutants and exploration of the molecular mechanism of pathogen infections are reviewed. We highlight the great potential of the zebrafish model for developing probiotics for xenobiotic detoxification, resistance against bacterial infection, and disease prevention and cure. Overall, the zebrafish model promises a brighter future for gut microbiome research.
Collapse
Affiliation(s)
- Xiaoting Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.,Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang, China
| | - Jinglin Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Furong Lu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.,Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| |
Collapse
|