1
|
Li H, Liang T, Liu Y, Wang P, Wang S, Zhao M, Zhang Y. Exploring Mitochondrial Heterogeneity and Evolutionary Dynamics in Thelephora ganbajun through Population Genomics. Int J Mol Sci 2024; 25:9013. [PMID: 39201699 PMCID: PMC11354633 DOI: 10.3390/ijms25169013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/10/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Limited exploration in fungal mitochondrial genetics has uncovered diverse inheritance modes. The mitochondrial genomes are inherited uniparentally in the majority of sexual eukaryotes, our discovery of persistent mitochondrial heterogeneity within the natural population of the basidiomycete fungus Thelephora ganbajun represents a significant advance in understanding mitochondrial inheritance and evolution in eukaryotes. Here, we present a comprehensive analysis by sequencing and assembling the complete mitogenomes of 40 samples exhibiting diverse cox1 heterogeneity patterns from various geographical origins. Additionally, we identified heterogeneous variants in the nad5 gene, which, similar to cox1, displayed variability across multiple copies. Notably, our study reveals a distinct prevalence of introns and homing endonucleases in these heterogeneous genes. Furthermore, we detected potential instances of horizontal gene transfer involving homing endonucleases. Population genomic analyses underscore regional variations in mitochondrial genome composition among natural samples exhibiting heterogeneity. Thus, polymorphisms in heterogeneous genes, introns, and homing endonucleases significantly influence mitochondrial structure, structural variation, and evolutionary dynamics in this species. This study contributes valuable insights into mitochondrial genome architecture, population dynamics, and the evolutionary implications of mitochondrial heterogeneity in sexual eukaryotes.
Collapse
Affiliation(s)
- Haixia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (T.L.); (Y.L.); (P.W.); (S.W.)
| | - Tong Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (T.L.); (Y.L.); (P.W.); (S.W.)
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Yongju Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (T.L.); (Y.L.); (P.W.); (S.W.)
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Pengfei Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (T.L.); (Y.L.); (P.W.); (S.W.)
| | - Shaojuan Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (T.L.); (Y.L.); (P.W.); (S.W.)
| | - Min Zhao
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (T.L.); (Y.L.); (P.W.); (S.W.)
| |
Collapse
|
2
|
Feng XL, Xie TC, Wang ZX, Lin C, Li ZC, Huo J, Li Y, Liu C, Gao JM, Qi J. Distinguishing Sanghuangporus from sanghuang-related fungi: a comparative and phylogenetic analysis based on mitogenomes. Appl Microbiol Biotechnol 2024; 108:423. [PMID: 39037499 PMCID: PMC11263249 DOI: 10.1007/s00253-024-13207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/24/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024]
Abstract
The Chinese medicinal fungi "Sanghuang" have been long recognized for their significant and valued medicinal properties, as documented in ancient medical literature. However, in traditional folk medicine, various macrofungi sharing similar appearance, habitat, and therapeutic effects with Sanghuang were erroneously used. These Sanghuang-like fungi mainly belong to the Porodaedalea, Phellinus, and Inonotus genera within the Hymenochaetaceae family. Despite the establishment of the Sanghuangporus genus and the identification of multiple species, the emerging taxonomic references based on morphological, ITS, and mycelial structural features have been inadequate to differentiate Sanghuangporus and Sanghuang-like fungi. To address this limitation, this study presents the first comparative and phylogenetic analysis of Sanghuang-related fungi based on mitogenomes. Our results show that Sanghuangporus species show marked convergence in mitochondrial genomic features and form a distinct monophyletic group based on phylogenetic analyses of five datasets. These results not only deepen our understanding of Sanghuang-like fungi but also offer novel insights into their mitochondrial composition and phylogeny, thereby providing new research tools for distinguishing members of the Sanghuangporus genus. KEY POINTS: • Sanghuangporus, Inonotus, and Porodaedalea are monophyly in sanghuang-like species. • Mitogenome-based analysis exhibits high resolution in sanghuang-like genus. • The mitogenomes provide strong evidence for reclassifying Phellinus gilvus S12 as Sanghuangporus vaninii.
Collapse
Affiliation(s)
- Xi-Long Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Tian-Chen Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Zhen-Xin Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Chao Lin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Zhao-Chen Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Jinxi Huo
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yougui Li
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, 712100, China.
| |
Collapse
|
3
|
Huang Y, Wang H, Huo S, Lu J, Norvienyeku J, Miao W, Qin C, Liu W. Comparative Mitogenomics Analysis Revealed Evolutionary Divergence among Neopestalotiopsis Species Complex (Fungi: Xylariales). Int J Mol Sci 2024; 25:3093. [PMID: 38542068 PMCID: PMC10970013 DOI: 10.3390/ijms25063093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 11/11/2024] Open
Abstract
The genus Neopestalotiopsis consists of obligate parasites that cause ring spot, scab, and leaf blight diseases in higher plant species. We assembled the three complete mitogenomes for the guava fruit ring spot pathogen, Neopestalotiopsis cubana. The mitogenomes are circular, with sizes of 38,666 bp, 33,846 bp, and 32,593 bp. The comparative analyses with Pestalotiopsis fici showed that N. cubana differs greatly from it in the length of the mitogenomes and the number of introns. Moreover, they showed significant differences in the gene content and tRNAs. The two genera showed little difference in gene skewness and codon preference for core protein-coding genes (PCGs). We compared gene sequencing in the mitogenomes of the order Xylariales and found large-scale gene rearrangement events, such as gene translocations and the duplication of tRNAs. N. cubana shows a unique evolutionary position in the phylum Ascomycota constructed in phylogenetic analyses. We also found a more concentrated distribution of evolutionary pressures on the PCGs of Neopestalotiopsis in the phylum Ascomycota and that they are under little selective pressure compared to other species and are subjected to purifying selection. This study explores the evolutionary dynamics of the mitogenomes of Neopestalotiopsis and provides important support for genetic and taxonomic studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chunxiu Qin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.H.); (H.W.); (S.H.); (J.L.); (J.N.); (W.M.)
| | - Wenbo Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.H.); (H.W.); (S.H.); (J.L.); (J.N.); (W.M.)
| |
Collapse
|
4
|
Silan E, Ozkilinc H. Phylogenetic divergences in brown rot fungal pathogens of Monilinia species from a worldwide collection: inferences based on the nuclear versus mitochondrial genes. BMC Ecol Evol 2022; 22:119. [PMID: 36271324 PMCID: PMC9585774 DOI: 10.1186/s12862-022-02079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Phylogenetic analyses for plant pathogenic fungi explore many questions on diversities, relationships, origins, and divergences of populations from different sources such as species, host, and geography. This information is highly valuable, especially from a large global sampling, to understand the evolutionary paths of the pathogens worldwide. Monilinia fructicola and M. laxa are two important fungal pathogens of stone fruits that cause the widespread disease commonly known as brown rot. Three nuclear genes (Calmodulin, SDHA, TEF1α) and three mitochondrial genes (Cytochrome_b, NAD2, and NAD5) of the two pathogen species from a worldwide collection including five different countries from four different continents were studied in this work. RESULTS Both Maximum Likelihood and Bayesian approaches were applied to the data sets, and in addition, Maximum Parsimony based approaches were used for the regions having indel polymorphisms. Calmodulin, SDHA, NAD2, and NAD5 regions were found phylogenetically informative and utilized for phylogenetics of Monilinia species for the first time. Each gene region presented a set of haplotypes except Cytochrome_b, which was monomorphic. According to this large collection of two Monilinia species around the world, M. fructicola showed more diversity than M. laxa, a result that should be carefully considered, as M. fructicola is known to be a quarantine pathogen. Moreover, the other two mitochondrial genes (NAD2 and NAD5) did not have any substitution type mutations but presented an intron indel polymorphism indicating the contribution of introns as well as mobile introns to the fungal diversity and evolution. Based on the concatenated gene sets, nuclear DNA carries higher mutations and uncovers more phylogenetic clusters in comparison to the mitochondrial DNA-based data for these fungal species. CONCLUSIONS This study provides the most comprehensive knowledge on the phylogenetics of both nuclear and mitochondrial genes of two prominent brown rot pathogens, M. fructicola and M. laxa. Based on the regions used in this study, the nuclear genes resolved phylogenetic branching better than the mitochondrial genes and discovered new phylogenetic lineages for these species.
Collapse
Affiliation(s)
- Ece Silan
- School of Graduate Studies, MSc Program in Biomolecular Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Hilal Ozkilinc
- School of Graduate Studies, MSc Program in Biomolecular Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
- Dept. of Molecular Biology and Genetics, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| |
Collapse
|
5
|
Ma Q, Geng Y, Li Q, Cheng C, Zang R, Guo Y, Wu H, Xu C, Zhang M. Comparative mitochondrial genome analyses reveal conserved gene arrangement but massive expansion/contraction in two closely related Exserohilum pathogens. Comput Struct Biotechnol J 2022; 20:1456-1469. [PMID: 35386100 PMCID: PMC8956966 DOI: 10.1016/j.csbj.2022.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/18/2023] Open
Abstract
Exserohilum turcicum and E. rostratum, two closely related fungal species, are both economically important pathogens but have quite different target hosts (specific to plants and cross-kingdom infection, respectively). In the present study, complete circular mitochondrial genomes of the two Exserohilum species were sequenced and de novo assembled, which mainly comprised the same set of 13 core protein-coding genes (PCGs), two rRNAs, and a certain number of tRNAs and unidentified open reading frames (ORFs). Comparative analyses indicated that these two fungi had significant mitogenomic collinearity and consistent mitochondrial gene arrangement, yet with vastly different mitogenome sizes, 264,948 bp and 64,620 bp, respectively. By contrast with the 17 introns containing 17 intronic ORFs (one-to-one) in the E. rostratum mitogenome, E. turcicum involved far more introns (70) and intronic ORFs (126), which was considered as the main contributing factors of their mitogenome expansion/contraction. Within the generally intron-rich gene cox1, a total of 18 and 10 intron position classes (Pcls) were identified separately in the two mitogenomes. Moreover, 16.16% and 10.85% ratios of intra-mitogenomic repetitive regions were detected in E. turcicum and E. rostratum, respectively. Based on the combined mitochondrial gene dataset, we established a well-supported topology of phylogeny tree of 98 ascomycetes, implying that mitogenomes may act as an effective molecular marker for fungal phylogenetic reconstruction. Our results served as the first report on mitogenomes in the genus Exserohilum, and would have significant implications in understanding the origin, evolution and pathogenic mechanisms of this fungal lineage.
Collapse
Affiliation(s)
- Qingzhou Ma
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuehua Geng
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Chongyang Cheng
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Rui Zang
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yashuang Guo
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Haiyan Wu
- Analytical Instrument Center, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chao Xu
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Meng Zhang
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Varassas SP, Kouvelis VN. Mitochondrial Transcription of Entomopathogenic Fungi Reveals Evolutionary Aspects of Mitogenomes. Front Microbiol 2022; 13:821638. [PMID: 35387072 PMCID: PMC8979003 DOI: 10.3389/fmicb.2022.821638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Entomopathogenic fungi and more specifically genera Beauveria and Metarhizium have been exploited for the biological control of pests. Genome analyses are important to understand better their mode of action and thus, improve their efficacy against their hosts. Until now, the sequences of their mitochondrial genomes were studied, but not at the level of transcription. Except of yeasts and Neurospora crassa, whose mt gene transcription is well described, in all other Ascomycota, i.e., Pezizomycotina, related information is extremely scarce. In this work, mt transcription and key enzymes of this function were studied. RT-PCR experiments and Northern hybridizations reveal the transcriptional map of the mt genomes of B. bassiana and M. brunneum species. The mt genes are transcribed in six main transcripts and undergo post-transcriptional modifications to create single gene transcripts. Promoters were determined in both mt genomes with a comparative in silico analysis, including all known information from other fungal mt genomes. The promoter consensus sequence is 5'-ATAGTTATTAT-3' which is in accordance with the definition of the polycistronic transcripts determined with the experiments described above. Moreover, 5'-RACE experiments in the case of premature polycistronic transcript nad1-nad4-atp8-atp6 revealed the 5' end of the RNA transcript immediately after the in silico determined promoter, as also found in other fungal species. Since several conserved elements were retrieved from these analyses compared to the already known data from yeasts and N. crassa, the phylogenetic analyses of mt RNA polymerase (Rpo41) and its transcriptional factor (Mtf1) were performed in order to define their evolution. As expected, it was found that fungal Rpo41 originate from the respective polymerase of T7/T3 phages, while the ancestor of Mtf1 is of alpha-proteobacterial origin. Therefore, this study presents insights about the fidelity of the mt single-subunit phage-like RNA polymerase during transcription, since the correct identification of mt promoters from Rpo41 requires an ortholog to bacterial sigma factor, i.e., Mtf1. Thus, a previously proposed hypothesis of a phage infected alpha-proteobacterium as the endosymbiotic progenitor of mitochondrion is confirmed in this study and further upgraded by the co-evolution of the bacterial (Mtf1) and viral (Rpo41) originated components in one functional unit.
Collapse
Affiliation(s)
| | - Vassili N. Kouvelis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Valenti I, Degradi L, Kunova A, Cortesi P, Pasquali M, Saracchi M. The First Mitochondrial Genome of Ciborinia camelliae and Its Position in the Sclerotiniaceae Family. FRONTIERS IN FUNGAL BIOLOGY 2022; 2:802511. [PMID: 37744111 PMCID: PMC10512376 DOI: 10.3389/ffunb.2021.802511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 09/26/2023]
Abstract
Ciborinia camelliae is the causal agent of camellia flower blight (CFB). It is a hemibiotrophic pathogen, inoperculate Discomycete of the family Sclerotiniaceae. It shows host and organ specificity infecting only flowers of species belonging to the genus Camellia, causing serious damage to the ornamental component of the plant. In this work, the first mitochondrial genome of Ciborinia camellia is reported. The mitogenome was obtained by combining Illumina short read and Nanopore long read technology. To resolve repetitive elements, specific primers were designed and used for Sanger sequencing. The manually curated mitochondrial DNA (mtDNA) of the Italian strain DSM 112729 is a circular sequence of 114,660 bp, with 29.6% of GC content. It contains two ribosomal RNA genes, 33 transfer RNAs, one RNase P gene, and 62 protein-coding genes. The latter include one gene coding for a ribosomal protein (rps3) and the 14 typical proteins involved in the oxidative metabolism. Moreover, a partial mtDNA assembled from a contig list was obtained from the deposited genome assembly of a New Zealand strain of C. camelliae. The present study contributes to understanding the mitogenome arrangement and the evolution of this phytopathogenic fungus in comparison to other Sclerotiniaceae species and confirms the usefulness of mitochondrial analysis to define phylogenetic positioning of this newly sequenced species.
Collapse
Affiliation(s)
| | | | | | | | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | | |
Collapse
|
8
|
Lin R, Xia Y, Liu Y, Zhang D, Xiang X, Niu X, Jiang L, Wang X, Zheng A. Comparative Mitogenomic Analysis and the Evolution of Rhizoctonia solani Anastomosis Groups. Front Microbiol 2021; 12:707281. [PMID: 34616376 PMCID: PMC8488467 DOI: 10.3389/fmicb.2021.707281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are the major energy source for cell functions. However, for the plant fungal pathogens, mitogenome variations and their roles during the host infection processes remain largely unknown. Rhizoctonia solani, an important soil-borne pathogen, forms different anastomosis groups (AGs) and adapts to a broad range of hosts in nature. Here, we reported three complete mitogenomes of AG1-IA RSIA1, AG1-IB RSIB1, and AG1-IC, and performed a comparative analysis with nine published Rhizoctonia mitogenomes (AG1-IA XN, AG1-IB 7/3/14, AG3, AG4, and five Rhizoctonia sp. mitogenomes). These mitogenomes encoded 15 typical proteins (cox1-3, cob, atp6, atp8-9, nad1-6, nad4L, and rps3) and several LAGLIDADG/GIY-YIG endonucleases with sizes ranging from 109,017 bp (Rhizoctonia sp. SM) to 235,849 bp (AG3). We found that their large sizes were mainly contributed by repeat sequences and genes encoding endonucleases. We identified the complete sequence of the rps3 gene in 10 Rhizoctonia mitogenomes, which contained 14 positively selected sites. Moreover, we inferred a robust maximum-likelihood phylogeny of 32 Basidiomycota mitogenomes, representing that seven R. solani and other five Rhizoctonia sp. lineages formed two parallel branches in Agaricomycotina. The comparative analysis showed that mitogenomes of Basidiomycota pathogens had high GC content and mitogenomes of R. solani had high repeat content. Compared to other strains, the AG1-IC strain had low substitution rates, which may affect its mitochondrial phylogenetic placement in the R. solani clade. Additionally, with the published RNA-seq data, we investigated gene expression patterns from different AGs during host infection stages. The expressed genes from AG1-IA (host: rice) and AG3 (host: potato) mainly formed four groups by k-mean partitioning analysis. However, conserved genes represented varied expression patterns, and only the patterns of rps3-nad2 and nad1-m3g18/mag28 (an LAGLIDADG endonuclease) were conserved in AG1-IA and AG3 as shown by the correlation coefficient analysis, suggesting regulation of gene repertoires adapting to infect varied hosts. The results of variations in mitogenome characteristics and the gene substitution rates and expression patterns may provide insights into the evolution of R. solani mitogenomes.
Collapse
Affiliation(s)
- Runmao Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Xia
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Yao Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Danhua Zhang
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Xing Xiang
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Xianyu Niu
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Linjia Jiang
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Xiaolin Wang
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Aiping Zheng
- Agriculture College, Sichuan Agricultural University, Chengdu, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
| |
Collapse
|