1
|
Fan F, Wang Z, Luo Q, Liu Z, Xiao Y, Ren Y. Medical Potential of Insect Symbionts. INSECTS 2025; 16:457. [PMID: 40429170 PMCID: PMC12111880 DOI: 10.3390/insects16050457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/18/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025]
Abstract
Insect symbionts and their metabolites are complex and diverse and are gradually becoming an important source of new medical materials. Some culturable symbionts from insects produce a variety of active compounds with medical potential. Among them, fatty acids, antibacterial peptides, polyene macrolides, alkaloids, and roseoflavin can inhibit the growth of human pathogenic bacteria and fungi; lipases, yeast killer toxins, reactive oxygen species, pyridines, polyethers, macrotetrolide nactins, and macrolides can kill human parasites; and peptides and polyketides can inhibit human tumors. However, due to difficulty in the culture of symbionts in vitro, difficulty in targeting bacteria to specific sites in the human body, the limited capability of symbionts to produce active metabolites in vitro, inconsistent clinical research results, adverse reactions on humans, and the development of antibiotic resistance, the application of insect symbionts and their metabolites in the medical field remains in its infancy. This paper summarizes the medical potential of insect symbionts and their metabolites and analyzes the status quo and existing problems with their medical application. Possible solutions to these problems are also proposed, with the aim of hastening the utilization of insect symbionts and their metabolites in the medical field.
Collapse
Affiliation(s)
- Fanglei Fan
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (F.F.); (Q.L.); (Z.L.)
| | - Zhengyan Wang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (F.F.); (Q.L.); (Z.L.)
| | - Qiong Luo
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (F.F.); (Q.L.); (Z.L.)
| | - Zhiyuan Liu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (F.F.); (Q.L.); (Z.L.)
| | - Yu Xiao
- College of Environmental and Life Sciences, Murdoch University, Perth, WA 6150, Australia;
| | - Yonglin Ren
- College of Environmental and Life Sciences, Murdoch University, Perth, WA 6150, Australia;
| |
Collapse
|
2
|
François RMM, Massicard JM, Weissman KJ. The chemical ecology and physiological functions of type I polyketide natural products: the emerging picture. Nat Prod Rep 2025; 42:324-358. [PMID: 39555733 DOI: 10.1039/d4np00046c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Covering: up to 2024.For many years, the value of complex polyketides lay in their medical properties, including their antibiotic and antifungal activities, with little consideration paid to their native functions. However, more recent evidence gathered from the study of inter-organismal interactions has revealed the influence of these metabolites upon the ecological adaptation and distribution of their hosts, as well as their modes of communication. The increasing number of sequenced genomes and associated transcriptomes has also unveiled the widespread occurrence of the underlying biosynthetic enzymes across all kingdoms of life, and the important contributions they make to physiological events specific to each organism. This review depicts the diversity of roles fulfilled by type I polyketides, particularly in light of studies carried out during the last decade, providing an initial overall picture of their diverse functions.
Collapse
|
3
|
Peng S, Shu F, Lu Y, Fan D, Zheng D, Yuan G. Quasi-targeted metabolomics revealed isoliquiritigenin and lauric acid associated with resistance to tobacco black shank. PLANT SIGNALING & BEHAVIOR 2024; 19:2332019. [PMID: 38527068 DOI: 10.1080/15592324.2024.2332019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/22/2024] [Indexed: 03/27/2024]
Abstract
Tobacco black shank (TBS), caused by Phytophthora nicotianae, is a severe disease. Plant root exudates play a crucial role in mediating plant-pathogen interactions in the rhizosphere. However, the specific interaction between key secondary metabolites present in root exudates and the mechanisms of disease resistance remains poorly understood. This study conducted a comprehensive comparison via quasi-targeted metabolomic analysis on the root exudate metabolites from the tobacco cultivar Yunyan87 and K326, both before and after inoculation with P. nicotianae. The results showed that the root exudate metabolites changed after P. nicotianae inoculation, and the root exudate metabolites of different tobacco cultivar was significantly different. Furthermore, homovanillic acid, lauric acid, and isoliquiritigenin were identified as potential key compounds for TBS resistance based on their impact on the mycelium growth of the pathogens. The pot experiment showed that isoliquiritigenin reduced the incidence by 55.2%, while lauric acid reduced it by 45.8%. This suggests that isoliquiritigenin and lauric acid have potential applications in the management of TBS. In summary, this study revealed the possible resistance mechanisms of differential metabolites in resistance of commercial tobacco cultivar, and for the first time discovered the inhibitory effects of isoliquiritigenin and homovanillic acid on P. nictianae, and attempt to use plants secondary metabolites of for plant protection.
Collapse
Affiliation(s)
- Shiwen Peng
- College of Agriculture, Guangxi University, Nanning, PR China
| | - Fangling Shu
- College of Agriculture, Guangxi University, Nanning, PR China
| | - Yanhui Lu
- Tobacco Leaf Department of Guangxi Zhuang Autonomous Region Tobacco Company, Nanning, PR China
| | - Dongsheng Fan
- Tobacco Leaf Department of Guangxi Zhuang Autonomous Region Tobacco Company, Nanning, PR China
| | - Dehong Zheng
- College of Agriculture, Guangxi University, Nanning, PR China
| | - Gaoqing Yuan
- College of Agriculture, Guangxi University, Nanning, PR China
| |
Collapse
|
4
|
Sun Q, Li J, Syed S, Li X, Yuan H, Lian B. Roles of oxalate-degrading bacteria in fungus-growing termite nests. Biodivers Data J 2024; 12:e130041. [PMID: 39193424 PMCID: PMC11347878 DOI: 10.3897/bdj.12.e130041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Fungus-growing termite (FGT) nests possess an oxalate pool derived from termite input and fungal oxalogenesis. The effect of oxalate biotransformation in the termite nest on the symbiotic association between FGTs and Termitomyces fungi is poorly understood. Here, we measured the pH value, mineral composition, oxalate and carbonate contents, along with the abundance and composition of oxalotrophic bacteria (OxB) in termite nests. The results showed the community structures of OxB in different parts of the termite nest across fungus comb, termite nest wall and surface soil, were significantly different. The diversity of OxB in the fungus comb was significantly lower than that in the termite nest wall and surface soil. Results also showed the abundance of OxB in the fungus comb was higher than that in the termite nest wall and significantly lower than that in the surface soil. In addition, we isolated and screened an oxalotrophic bacterium Methylobacterium sp. TA1 from the fungus comb, which can degrade calcium oxalate and convert it into calcite. Our results from the perspective of oxalate biodegradation and transformation show that the oxalate-carbonate pathway driven by OxB in active termite nests can maintain stable microecological environments in termite nests and is beneficial to the symbiotic association between FGTs and Termitomyces.
Collapse
Affiliation(s)
- Qibiao Sun
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, ChinaCollege of Life Sciences, College of Marine Science and Engineering, Nanjing Normal UniversityNanjingChina
- Jiangxi Province Key Laboratory of Watershed Ecological Process and Information, Jiujiang Key Laboratory of Fungal Resources Conservation and Utilization, College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, ChinaJiangxi Province Key Laboratory of Watershed Ecological Process and Information, Jiujiang Key Laboratory of Fungal Resources Conservation and Utilization, College of Pharmacy and Life Sciences, Jiujiang UniversityJiujiangChina
| | - Jing Li
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, ChinaCollege of Life Sciences, College of Marine Science and Engineering, Nanjing Normal UniversityNanjingChina
| | - Shameer Syed
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, ChinaCollege of Life Sciences, College of Marine Science and Engineering, Nanjing Normal UniversityNanjingChina
| | - Xiaofang Li
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, ChinaCollege of Life Sciences, College of Marine Science and Engineering, Nanjing Normal UniversityNanjingChina
| | - Huatao Yuan
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, ChinaCollege of Life Sciences, College of Marine Science and Engineering, Nanjing Normal UniversityNanjingChina
| | - Bin Lian
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, ChinaCollege of Life Sciences, College of Marine Science and Engineering, Nanjing Normal UniversityNanjingChina
| |
Collapse
|
5
|
Grundmann CO, Guzman J, Vilcinskas A, Pupo MT. The insect microbiome is a vast source of bioactive small molecules. Nat Prod Rep 2024; 41:935-967. [PMID: 38411238 DOI: 10.1039/d3np00054k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Covering: September 1964 to June 2023Bacteria and fungi living in symbiosis with insects have been studied over the last sixty years and found to be important sources of bioactive natural products. Not only classic producers of secondary metabolites such as Streptomyces and other members of the phylum Actinobacteria but also numerous bacteria from the phyla Proteobacteria and Firmicutes and an impressive array of fungi (usually pathogenic) serve as the source of a structurally diverse number of small molecules with important biological activities including antimicrobial, cytotoxic, antiparasitic and specific enzyme inhibitors. The insect niche is often the exclusive provider of microbes producing unique types of biologically active compounds such as gerumycins, pederin, dinactin, and formicamycins. However, numerous insects still have not been described taxonomically, and in most cases, the study of their microbiota is completely unexplored. In this review, we present a comprehensive survey of 553 natural products produced by microorganisms isolated from insects by collating and classifying all the data according to the type of compound (rather than the insect or microbial source). The analysis of the correlations among the metadata related to insects, microbial partners, and their produced compounds provides valuable insights into the intricate dynamics between insects and their symbionts as well as the impact of their metabolites on these relationships. Herein, we focus on the chemical structure, biosynthesis, and biological activities of the most relevant compounds.
Collapse
Affiliation(s)
| | - Juan Guzman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University, Giessen, Germany
| | - Mônica Tallarico Pupo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
6
|
Shoaib M, Bai R, Li S, Xie Y, Shen Y, Ni J. Exploring the diversity of microbes and natural products from fungus-growing termite tripartite symbiosis. ENGINEERING MICROBIOLOGY 2024; 4:100124. [PMID: 39628791 PMCID: PMC11611000 DOI: 10.1016/j.engmic.2023.100124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 12/06/2024]
Abstract
The fungus-growing termite is considered a distinct ecological niche because it involves a tripartite symbiosis between the termite host, gut microflora, and the in vitro fungus Termitomyces, which has led to the expansion of highly organized and complex societies among termite colonies. Tripartite symbiosis in fungus-growing termites may promote unique microbes with distinctive metabolic pathways that may serve as valuable resources for developing novel antimicrobial therapeutic options. Recent research on complex tripartite symbioses has revealed a plethora of previously unknown natural products that may have ecological roles in signaling, communication, or defense responses. Natural products produced by symbionts may act as crucial intermediaries between termites and their pathogens by providing direct protection through their biological activities. Herein, we review the state-of-the-art research on both microbes and natural products originated from fungus-growing termite tripartite symbiosis, highlighting the diversity of microbes and the uniqueness of natural product classes and their bioactivities. Additionally, we emphasize future research prospects on fungus-growing termite related microorganisms, with a particular focus on their potential roles in bioactive product discovery.
Collapse
Affiliation(s)
- Muhammad Shoaib
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
- Institute of Health Sciences, Islamabad Campus. Khyber Medical University, Peshawar KPK, 25120 Pakistan
| | - Ruining Bai
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| | - Shuai Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| | - Yan Xie
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
- CRISPR and Archaea Biology Research Centre, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
7
|
Chen S, Zhou A, Xu Y. Symbiotic Bacteria Regulating Insect-Insect/Fungus/Virus Mutualism. INSECTS 2023; 14:741. [PMID: 37754709 PMCID: PMC10531535 DOI: 10.3390/insects14090741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/25/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023]
Abstract
Bacteria associated with insects potentially provide many beneficial services and have been well documented. Mutualism that relates to insects is widespread in ecosystems. However, the interrelation between "symbiotic bacteria" and "mutualism" has rarely been studied. We introduce three systems of mutualism that relate to insects (ants and honeydew-producing Hemiptera, fungus-growing insects and fungi, and plant persistent viruses and vector insects) and review the species of symbiotic bacteria in host insects, as well as their functions in host insects and the mechanisms underlying mutualism regulation. A deeper understanding of the molecular mechanisms and role of symbiotic bacteria, based on metagenomics, transcriptomics, proteomics, metabolomics, and microbiology, will be required for describing the entire interaction network.
Collapse
Affiliation(s)
- Siqi Chen
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou 510642, China;
| | - Aiming Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management, Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yijuan Xu
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
8
|
Chertkova E, Kabilov MR, Yaroslavtseva O, Polenogova O, Kosman E, Sidorenko D, Alikina T, Noskov Y, Krivopalov A, Glupov VV, Kryukov VY. Links between Soil Bacteriobiomes and Fungistasis toward Fungi Infecting the Colorado Potato Beetle. Microorganisms 2023; 11:microorganisms11040943. [PMID: 37110366 PMCID: PMC10141481 DOI: 10.3390/microorganisms11040943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/02/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
Entomopathogenic fungi can be inhibited by different soil microorganisms, but the effect of a soil microbiota on fungal growth, survival, and infectivity toward insects is insufficiently understood. We investigated the level of fungistasis toward Metarhizium robertsii and Beauveria bassiana in soils of conventional potato fields and kitchen potato gardens. Agar diffusion methods, 16S rDNA metabarcoding, bacterial DNA quantification, and assays of Leptinotarsa decemlineata survival in soils inoculated with fungal conidia were used. Soils of kitchen gardens showed stronger fungistasis toward M. robertsii and B. bassiana and at the same time the highest density of the fungi compared to soils of conventional fields. The fungistasis level depended on the quantity of bacterial DNA and relative abundance of Bacillus, Streptomyces, and some Proteobacteria, whose abundance levels were the highest in kitchen garden soils. Cultivable isolates of bacilli exhibited antagonism to both fungi in vitro. Assays involving inoculation of nonsterile soils with B. bassiana conidia showed trends toward elevated mortality of L. decemlineata in highly fungistatic soils compared to low-fungistasis ones. Introduction of antagonistic bacilli into sterile soil did not significantly change infectivity of B. bassiana toward the insect. The results support the idea that entomopathogenic fungi can infect insects within a hypogean habitat despite high abundance and diversity of soil antagonistic bacteria.
Collapse
Affiliation(s)
- Ekaterina Chertkova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630091, Russia
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga Yaroslavtseva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630091, Russia
| | - Olga Polenogova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630091, Russia
| | - Elena Kosman
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630091, Russia
| | - Darya Sidorenko
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630091, Russia
| | - Tatyana Alikina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yury Noskov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630091, Russia
| | - Anton Krivopalov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630091, Russia
| | - Viktor V. Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630091, Russia
| | - Vadim Yu. Kryukov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630091, Russia
| |
Collapse
|
9
|
Baranova AA, Zakalyukina YV, Ovcharenko AA, Korshun VA, Tyurin AP. Antibiotics from Insect-Associated Actinobacteria. BIOLOGY 2022; 11:1676. [PMID: 36421390 PMCID: PMC9687666 DOI: 10.3390/biology11111676] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/10/2023]
Abstract
Actinobacteria are involved into multilateral relationships between insects, their food sources, infectious agents, etc. Antibiotics and related natural products play an essential role in such systems. The literature from the January 2016-August 2022 period devoted to insect-associated actinomycetes with antagonistic and/or enzyme-inhibiting activity was selected. Recent progress in multidisciplinary studies of insect-actinobacterial interactions mediated by antibiotics is summarized and discussed.
Collapse
Affiliation(s)
- Anna A. Baranova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Gause Institute of New Antibiotics, Bol’shaya Pirogovskaya 11, 119021 Moscow, Russia
| | - Yuliya V. Zakalyukina
- Department of Soil Science, Lomonosov Moscow State University, Leninskie Gory 1-12, 119991 Moscow, Russia
| | - Anna A. Ovcharenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Higher Chemical College RAS, Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anton P. Tyurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
10
|
Yong D, Li Y, Gong K, Yu Y, Zhao S, Duan Q, Ren C, Li A, Fu J, Ni J, Zhang Y, Li R. Biocontrol of strawberry gray mold caused by Botrytis cinerea with the termite associated Streptomyces sp. sdu1201 and actinomycin D. Front Microbiol 2022; 13:1051730. [PMID: 36406410 PMCID: PMC9674021 DOI: 10.3389/fmicb.2022.1051730] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Strawberry gray mold caused by Botrytis cinerea is one of the most severe diseases in pre- and post-harvest periods. Although fungicides have been an effective way to control this disease, they can cause serious “3R” problems (Resistance, Resurgence and Residue). In this study, Streptomyces sp. sdu1201 isolated from the hindgut of the fungus-growing termite Odontotermes formosanus revealed significant antifungal activity against B. cinerea. Four compounds (1–4) were isolated from Streptomyces sp. sdu1201 and further identified as actinomycins by the HRMS and 1D NMR data. Among them, actinomycin D had the strongest inhibitory activity against B. cinerea with the EC50 value of 7.65 μg mL−1. The control effect of actinomycin D on strawberry gray mold was also tested on fruits and leaves in vitro, and its control efficiency on leaves was 78.77% at 3 d. Moreover, actinomycin D can also inhibit the polarized growth of germ tubes of B. cinerea. Therefore, Streptomyces sp. sdu1201 and actinomycin D have great potential to gray mold as biocontrol agents.
Collapse
Affiliation(s)
- Daojing Yong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Qingdao Zhongda Agritech Co., Ltd., Qingdao, China
| | - Yue Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kai Gong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yingying Yu
- Qingdao Zhongda Agritech Co., Ltd., Qingdao, China
| | - Shuai Zhao
- Qingdao Zhongda Agritech Co., Ltd., Qingdao, China
| | - Qiong Duan
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Cailing Ren
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jun Fu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jinfeng Ni
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- *Correspondence: Jinfeng Ni,
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Youming Zhang,
| | - Ruijuan Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Ruijuan Li,
| |
Collapse
|
11
|
Alam K, Mazumder A, Sikdar S, Zhao YM, Hao J, Song C, Wang Y, Sarkar R, Islam S, Zhang Y, Li A. Streptomyces: The biofactory of secondary metabolites. Front Microbiol 2022; 13:968053. [PMID: 36246257 PMCID: PMC9558229 DOI: 10.3389/fmicb.2022.968053] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Natural products derived from microorganisms serve as a vital resource of valuable pharmaceuticals and therapeutic agents. Streptomyces is the most ubiquitous bacterial genus in the environments with prolific capability to produce diverse and valuable natural products with significant biological activities in medicine, environments, food industries, and agronomy sectors. However, many natural products remain unexplored among Streptomyces. It is exigent to develop novel antibiotics, agrochemicals, anticancer medicines, etc., due to the fast growth in resistance to antibiotics, cancer chemotherapeutics, and pesticides. This review article focused the natural products secreted by Streptomyces and their function and importance in curing diseases and agriculture. Moreover, it discussed genomic-driven drug discovery strategies and also gave a future perspective for drug development from the Streptomyces.
Collapse
Affiliation(s)
- Khorshed Alam
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Arpita Mazumder
- Department of Microbiology, University of Chittagong, Chittagong, Bangladesh
| | - Suranjana Sikdar
- Department of Microbiology, University of Chittagong, Chittagong, Bangladesh
| | - Yi-Ming Zhao
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jinfang Hao
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chaoyi Song
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yanyan Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Rajib Sarkar
- Industrial Microbiology Research Division, BCSIR Chattogram Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram, Bangladesh
| | - Saiful Islam
- Industrial Microbiology Research Division, BCSIR Chattogram Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram, Bangladesh
- Saiful Islam,
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Youming Zhang,
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- *Correspondence: Aiying Li,
| |
Collapse
|
12
|
Özçam M, Oh JH, Tocmo R, Acharya D, Zhang S, Astmann TJ, Heggen M, Ruiz-Ramírez S, Li F, Cheng CC, Vivas E, Rey FE, Claesen J, Bugni TS, Walter J, van Pijkeren JP. A secondary metabolite drives intraspecies antagonism in a gut symbiont that is inhibited by cell-wall acetylation. Cell Host Microbe 2022; 30:824-835.e6. [PMID: 35443156 DOI: 10.1016/j.chom.2022.03.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/16/2021] [Accepted: 03/25/2022] [Indexed: 11/03/2022]
Abstract
The mammalian microbiome encodes numerous secondary metabolite biosynthetic gene clusters; yet, their role in microbe-microbe interactions is unclear. Here, we characterized two polyketide synthase gene clusters (fun and pks) in the gut symbiont Limosilactobacillus reuteri. The pks, but not the fun, cluster encodes antimicrobial activity. Forty-one of 51 L. reuteri strains tested are sensitive to Pks products; this finding was independent of strains' host origin. Sensitivity to Pks was also established in intraspecies competition experiments in gnotobiotic mice. Comparative genome analyses between Pks-resistant and -sensitive strains identified an acyltransferase gene (act) unique to Pks-resistant strains. Subsequent cell-wall analysis of wild-type and act mutant strains showed that Act acetylates cell-wall components, providing resistance to Pks-mediated killing. Additionally, pks mutants lost their competitive advantage, while act mutants lost their Pks resistance in in vivo competition assays. These findings provide insight into how closely related gut symbionts can compete and co-exist in the gastrointestinal tract.
Collapse
Affiliation(s)
- Mustafa Özçam
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jee-Hwan Oh
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Restituto Tocmo
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Deepa Acharya
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Shenwei Zhang
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Theresa J Astmann
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark Heggen
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Fuyong Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Christopher C Cheng
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Eugenio Vivas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jan Claesen
- Department of Cardiovascular and Metabolic Sciences and Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Tim S Bugni
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jens Walter
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada; Department of Medicine and APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland; School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Jan-Peter van Pijkeren
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA; Food Research Institute, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
13
|
Cole ME, Ceja-Navarro JA, Mikaelyan A. The power of poop: Defecation behaviors and social hygiene in insects. PLoS Pathog 2021; 17:e1009964. [PMID: 34710195 PMCID: PMC8553070 DOI: 10.1371/journal.ppat.1009964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Marissa E. Cole
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Javier A. Ceja-Navarro
- Joint BioEnergy Institute, Emeryville, California, United States of America
- Bioengineering and Biomedical Sciences Department, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California, United States of America
| | - Aram Mikaelyan
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
14
|
Bayen S, Roy S, Chakraborti D, Mukhopadhyay A, Hazarika LK, Pramanik P, Borchetia S, Mukherjee S. Mutualistic relation of termites with associated microbes for their harmonious survival. Symbiosis 2021. [DOI: 10.1007/s13199-021-00809-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|