1
|
Liu Y, Yuan K, Lin Y, Yang Y, Kong W, Shan J, Niu H, Kong W, Li F, Yue X, Du Y, Liang Y, Chang H, Yu Z, Wang J, Yang G, Cao L, Huang K, Yang S, Tang T. Directional Freeze-Casting Cryogel Loaded with Quaternized Chitosan Modified Gallium Metal-Organic Frameworks to Capture and Eradicate the Resistant Bacteria for Guided Regeneration in Infected Bone Defects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414437. [PMID: 39846310 DOI: 10.1002/adma.202414437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/16/2024] [Indexed: 01/24/2025]
Abstract
Antimicrobial resistance and impaired bone regeneration are the great challenges in treating infected bone defects. Its recurrent and resistant nature, high incidence rate, long-term hospitalization, and high medical costs have driven the efforts of the scientific community to develop new therapies to improve the situation. Considering the complex microenvironment and persistent mechanisms mediated by resistant bacteria, it is crucial to develop an implant with enhanced osseointegration and sustained and effective infection clearance effects. Here, a positively charged quaternized chitosan (QCS) coated gallium-based metal-organic framework (GaMOF) is designed, to capture the antibiotic-resistant bacteria (Methicillin-resistant Staphylococcus aureus, MRSA) as a "captor", and rejuvenate Methicillin (Me) via disturbing the tricarboxylic acid (TCA) cycle. Then, a radially oriented porous cryogel loaded with the Me and QCSGaMOF is fabricated by the directional freeze-casting method. The oriented porous structure has an enhanced osseointegration effect by guiding the ingrowth of osteogenic cells. In vitro and in vivo experiments prove the advantages of as-prepared Me/QCSGa-MOF@Cryogel in combating resistant bacteria and guiding bone regeneration in infected bone defects.
Collapse
Affiliation(s)
- Yihao Liu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Kai Yuan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Yixuan Lin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Yiqi Yang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou, 310003, P. R. China
| | - Weiqing Kong
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, 199Jiefang South Road, Xuzhou, 221009, P. R. China
| | - Jing Shan
- School of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Haoyi Niu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Weize Kong
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Fupeng Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xiaokun Yue
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Yun Du
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Yakun Liang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, P. R. China
| | - Haishuang Chang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, P. R. China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Guangzheng Yang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Lingyan Cao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Kai Huang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| |
Collapse
|
2
|
Cui X, Liu S, Jin Y, Li M, Shao C, Yu H, Zhang Y, Liu Y, Wang Y. Rapid determination of antibiotic susceptibility of clinical isolates of Escherichia coli by SYBR green I/Propidium iodide assay. Sci Rep 2024; 14:18782. [PMID: 39138327 PMCID: PMC11322298 DOI: 10.1038/s41598-024-69286-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Infections caused by pathogenic Escherichia coli are a serious threat to human health, while conventional antibiotic susceptibility tests (AST) have a long turn-around time, and rapid antibiotic susceptibility methods are urgently needed to save lives in the clinic, reduce antibiotic misuse and prevent emergence of antibiotic-resistant bacteria. We optimized and validated the feasibility of a novel rapid AST based on SYBR Green I and Propidium Iodide (SGPI-AST) for E. coli drug susceptibility test. A total of 112 clinical isolates of E. coli were collected and four antibiotics (ceftriaxone, cefoxitin, imipenem, meropenem) were selected for testing. Bacterial survival rate of E. coli was remarkably linearly correlated with S value at different OD600 values. After optimizing the antibiotic concentrations, the sensitivity and specificity of SGPI-AST reached 100%/100%, 97.8%/100%, 100%/100% and 98.4%/99% for ceftriaxone, cefoxitin, imipenem and meropenem, respectively, and the corresponding concordances of the SGPI-AST with conventional AST were 1.000, 0.980, 1.000 and 0.979, respectively. The SGPI-AST can rapidly and accurately determine the susceptibility of E. coli clinical isolates to multiple antibiotics in 60 min, and has the potential to be applied to guide the precise selection of antibiotics for clinical management of infections caused by pathogenic E. coli.
Collapse
Affiliation(s)
- Xianglun Cui
- Department of Clinical Laboratory of Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Shuyue Liu
- Department of Clinical Laboratory of Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Jin
- Department of Clinical Laboratory of Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mingyu Li
- Department of Clinical Laboratory of Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chunhong Shao
- Department of Clinical Laboratory of Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Hong Yu
- Department of Clinical Laboratory of Zhucheng People's Hospital, Weifang, Shandong, China
| | - Ying Zhang
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China.
| | - Yun Liu
- Department of Clinical Laboratory of Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Yong Wang
- Department of Clinical Laboratory of Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China.
| |
Collapse
|
3
|
Cheng Z, He X, Wu Z, Weng P. Improving the viability of powdered Lactobacillus fermentum Lf01 with complex lyoprotectants by maintaining cell membrane integrity and regulating related genes. J Food Biochem 2022; 46:e14181. [PMID: 35393671 DOI: 10.1111/jfbc.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/01/2022]
Abstract
In this study, Lactobacillus fermentum Lf01, which was screened out in the early stage of the experiment, had better fermentation performance as the research objectives, and was prepared into powder by vacuum freeze-drying technology. We used response surface methodology to optimize the composition of the mixture used to protect powdered L. fermentum. Our data demonstrated that 10% skim milk, 12% sucrose, 0.767% tyrosine, and 2.033% sorbitol ensured the highest survival rate (92.7%) of L. fermentum. We have initially explored the potential mechanism of the complex protectants through the protection effect under the electron microscope, and the analysis methods of Fourier transform infrared spectroscopy and transcriptomics. The complex protectants could effectively maintain the permeability barrier and structural integrity of cell membrane and avoid the leakage of cell contents. Transcriptomic data have also indicated that the protective effect of the complex protectants on bacteria during freeze-drying was most likely achieved through the regulation of related genes. We identified 240 differential genes in the treatment group, including 231 up-regulated genes and 9 down-regulated genes. Gene ontology (GO) and Kyoto encyclopaedia of genes and genomes (KEGG) analyses of differential expression genes (DEGs) indicated that genes involved in amino acid metabolism, carbohydrate metabolism, membrane transport, fatty acid biosynthesis and cell growth were significantly up-regulated. These new results provided novel insights into the potential mechanism of lyoprotectants at the cellular level, morphological level, and gene level of the bacteria. PRACTICAL APPLICATIONS: In our study, a strain of Lactobacillus fermentum Lf01 with good fermentation performance was selected to be prepared into powder by freeze-drying technique. Bacterial cells were unavoidably damaged during the freeze-drying process. As a result, we investigated the protective effects on L. fermentum of ten distinct freeze-dried protectants and their mixtures. We were also attempting to explain the mechanism of action of the complex protectants at the cellular level, morphological level, and gene level of the bacteria. This presents very important theoretical and practical significance for the preservation of strains and the production of commercial direct-investment starter.
Collapse
Affiliation(s)
- Ziyi Cheng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Xiaoli He
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Zufang Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Peifang Weng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|