1
|
Ferrara M, D’Anza E, Montefusco T, Iommelli P, Piccirillo B, Ruggiero A, Vastolo A. In Vitro Evaluation of Three Pisum sativum L. Varieties to Partially Replace Soybean and Corn Meal in Dairy Cow Diet. Animals (Basel) 2025; 15:855. [PMID: 40150384 PMCID: PMC11939305 DOI: 10.3390/ani15060855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/28/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
Pea (Pisum sativum L.) seeds are valuable feed ingredients due to their high-quality protein and starch digestibility, making them a viable alternative to soybean meal and corn grain. This study evaluated the nutritional value of three commercial pea varieties (Ganster, Peps, and Poseidon) through in vitro trials. Each variety was incorporated into an experimental diet (GNS, PES, and PNS) for dairy cows, partially replacing soybean and corn meals. These diets were compared to a control diet containing only soybean and corn meals. All diets were incubated anaerobically for 120 h with dairy cow rumen liquor. Results showed that GNS and PES diets enhanced protein degradability (p < 0.05) and fermentation kinetics (p < 0.001). Additionally, all experimental diets reduced ammonia production (p < 0.001), while the PES diet increased (p < 0.001) volatile fatty acid production. Among the tested varieties, Peps demonstrated the greatest potential by improving protein metabolism and volatile fatty acid production. These findings suggest that pea grains can be a suitable alternative in dairy cow diets, supporting efficient ruminal fermentation and nutrient utilization.
Collapse
Affiliation(s)
| | | | | | | | | | - Alessio Ruggiero
- Dipartimento di Medicina Veterinaria e Produzioni Animali, University of Napoli Federico II, 80137 Napoli, Italy; (M.F.); (E.D.); (T.M.); (P.I.); (B.P.); (A.V.)
| | | |
Collapse
|
2
|
Li S, Wang H, Li B, Lu H, Zhao J, Gao A, An Y, Yang J, Ma T. Multi-Omics Analysis Reveals the Negative Effects of High-Concentrate Diets on the Colonic Epithelium of Dumont Lambs. Animals (Basel) 2025; 15:749. [PMID: 40076032 PMCID: PMC11898968 DOI: 10.3390/ani15050749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Feeding HC diets has been found to induce metabolic dysregulation in the colon. However, the mechanisms by which changes in colonic flora and metabolites damage the colonic epithelium are poorly studied. Therefore, the present experiment used a multi-omics technique to investigate the mechanism of colonic injury induced by high-concentrate diets in lambs. Twelve male Dumont lambs were randomly split into two groups: a low-concentrate diet (LC = concentrate/forage = 30:70) group and a high-concentrate diet (HC = concentrate/forage = 70:30) group. The results showed that the HC group presented significantly increased lipopolysaccharide (LPS) concentrations in the colonic epithelium and significantly decreased serum total cholesterol (TC), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) levels (p < 0.05), which led to cavities and inflammatory cell infiltration in the colonic epithelium. The HC group had significantly lower pH and less VFAs in colon contents, as well as a significantly increased abundance of bacteria of the genera [Eubacterium]_coprostanoligenes_group, Rikenellaceae_RC9_gut_group, Treponema, Clostridia_UCG-014, Alistipes, Ruminococcus, Christensenellaceae_R-7_group, UCG-002, Bacteroidales_RF16_group and Lachnospiraceae_AC2044_group compared to the LC diet group. These microorganisms significantly increased the level of metabolites of cholic acid, chenodeoxycholic acid, LysoPA (P-16:0/0:0), methapyrilene, and fusaric acid. A transcriptome analysis showed that cytokine-cytokine receptor interaction, glutathione metabolism, and the peroxisome signaling pathway were downregulated in the colon epithelium of the lambs fed the HC diet. Therefore, the HC diet caused epithelial inflammation and oxidative damage by affecting the interaction between the microbial flora of the colon and metabolites and the host epithelium, which eventually disrupted colon homeostasis and had a negative impact on sheep health.
Collapse
Affiliation(s)
- Shufang Li
- Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.); (B.L.); (H.L.); (J.Z.); (J.Y.); (T.M.)
| | - Hairong Wang
- Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.); (B.L.); (H.L.); (J.Z.); (J.Y.); (T.M.)
| | - Boyang Li
- Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.); (B.L.); (H.L.); (J.Z.); (J.Y.); (T.M.)
| | - Henan Lu
- Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.); (B.L.); (H.L.); (J.Z.); (J.Y.); (T.M.)
| | - Jianxin Zhao
- Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.); (B.L.); (H.L.); (J.Z.); (J.Y.); (T.M.)
| | - Aiwu Gao
- Food Science, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Yawen An
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010018, China;
| | - Jinli Yang
- Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.); (B.L.); (H.L.); (J.Z.); (J.Y.); (T.M.)
| | - Tian Ma
- Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.); (B.L.); (H.L.); (J.Z.); (J.Y.); (T.M.)
| |
Collapse
|
3
|
Xie S, Yang Q, Ying Z, Cai M, Fan W, Gao H, Feng X, Wu Y. Dietary supplementation with Epimedium contributes to the improvement of hormone levels, gut microbiota, and serum metabolite composition in the Chinese forest musk deer ( Moschus berezovskii). Front Vet Sci 2025; 11:1497115. [PMID: 39911481 PMCID: PMC11794312 DOI: 10.3389/fvets.2024.1497115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/18/2024] [Indexed: 02/07/2025] Open
Abstract
The Chinese forest musk deer (Moschus berezovskii) is a small ruminant animal with special economic value. It is listed as a National Level I key protected species in China. However, these animals are prone to stress responses in captive environments. Epimedium, a traditional Chinese herb with aphrodisiac and anti-stress properties, may have potential benefits for the health of the captive Chinese forest musk deer, though its efficacy requires further investigation. This study aimed to evaluate the effects of dietary supplementation with Epimedium on the hormone levels, gut microbiota composition, and serum metabolism of the Chinese forest musk deer. The fourteen adult male Chinese forest musk deer with similar initial body weights (7.0 ± 0.3 kg) and an average age of 4.5 years were randomly divided into two groups, each containing seven animals. The control group was fed a standard diet without Epimedium, while the Epimedium group received the standard diet supplemented with 15 g Epimedium /kg DM. The results indicated that the inclusion of Epimedium in the diet increased dry matter intake (DMI) and improved the ratio of feed to gain (F/G), with an increase in fecal testosterone levels (p < 0.05). 16S rDNA sequencing analysis revealed that Epimedium enhanced the richness and diversity of the gut microbiota in the Chinese forest musk deer, increasing the relative abundance of beneficial bacteria such as Firmicutes, while reducing the relative abundance of the potentially pathogenic Proteobacteria (p < 0.05). A widely targeted metabolomics analysis identified 25 differential metabolites between the two groups. Significant alterations were observed in key metabolic pathways related to lipid metabolism, hormone regulation, and antioxidation, such as ovarian steroidogenesis, tyrosine metabolism, and glycerophospholipid metabolism. Furthermore, correlation analysis between gut microbiota and serum differential metabolites showed that the relative abundances of Clostridia_vadinBB60_group and UCG-010 were positively correlated with anserine and 7-ketocholesterol, respectively (p < 0.05). In conclusion, Epimedium positively influenced feed intake and hormone levels in the Chinese forest musk deer by modulating gut microbiota composition and serum metabolism.
Collapse
Affiliation(s)
- Shan Xie
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Qinlin Yang
- Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, China
| | - Zaixiang Ying
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Mingcheng Cai
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Wenqiao Fan
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Hanyu Gao
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Xiaolan Feng
- Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, China
| | - Yongjiang Wu
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
| |
Collapse
|
4
|
Ye M, Liu Y, Wang F, Yang X, Yang X, Gao X, Liu W, Yu J. Polysaccharide extracted from Sarcandra glabra residue attenuate cognitive impairment by regulating gut microbiota in diabetic mice. Int J Biol Macromol 2024; 270:132121. [PMID: 38719002 DOI: 10.1016/j.ijbiomac.2024.132121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Diabetic encephalopathy (DE), characterized by cognitive impairment, currently lacks targeted treatment. Previous studies have shown that Sarcandra glabra extracted residue polysaccharide (SERP) exhibited hypoglycemic effects either in vitro or in streptozotocin-induced diabetes mice. However, the therapeutic effect of SERP on DE was not elucidated. This study investigated the therapeutic effect of SERP on DE and its underlying mechanism. Our results revealed that SERP regulates glucose and lipid metabolism, improves cognitive function, and exhibits diminished activity post-antibiotic intervention. Importantly, we discovered a novel mechanism by which SERP modulates the gut microbiota, specifically enriching Bacteroidales S24-7, resulting in elevated levels of butyric acid in the intestine. This regulation modulates the intestinal endocrine cell lipid metabolism level, restores damaged intestinal barriers and neural epithelial circuits, thus exhibiting cure effects. Our findings suggest that SERP could become a candidate for treating DE, potentially involving the regulation mechanism of the "microbiota-gut-brain axis". This study underscores the unique therapeutic efficacy of SERP in managing DE, offering fresh drug candidates and innovative treatment strategies for this challenging condition.
Collapse
Affiliation(s)
- Meng Ye
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yameng Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Feng Wang
- Simcere Pharmaceutical Group Limited, Nanjing 210042, PR China
| | - Xiyuchen Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiaobing Yang
- Biology and Medicine Department, Jiangsu Industrial Technology Research Institute, Nanjing 210031, PR China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Juping Yu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
5
|
Gao Z, Raza SHA, Ma B, Zhang F, Wang Z, Hou S, Almohaimeed HM, Alhelaify SS, Alzahrani SS, Alharthy OM, Gui L. Effects of dietary wheat supplementation levels on growth performance, rumen bacterial community and fermentation parameters in Chinese Tibetan Sheep. J Anim Physiol Anim Nutr (Berl) 2024; 108:470-479. [PMID: 38014916 DOI: 10.1111/jpn.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/31/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023]
Abstract
The objective of this study was to evaluate various wheat supplementation levels on rumen microbiota and fermentation parameter in Tibetan sheep. A total of ninety ram with an average 12.37 ± 0.92 kg at the age of 2 months were randomly allocated to three treatments: 0% wheat diet (CW, N = 30), 10% wheat diet (LW, N = 30), and 15% wheat diet (HW, N = 30) on a dry matter basis. The experiment was conducted over a period of 127 days, including 7 days of adaption to the diets. Our results showed that sheep fed 10% wheat exhibited optimal average daily gain and feed gain ratio compared with HW group (p < 0.05). The serum alkaline phosphatase concentration was the lowest when fed the 10% wheat diet (p < 0.05), whereas serum aspartate aminotransferase concentration was the highest (p < 0.05). Both acetate and propionate increased with increase in dietary wheat ratio (p < 0.05), while a greater decrease in concentrations of NH3 -N was observed (p < 0.05). In rumen fluid, 3413 OTUs were obtained with 97% consistency. Phylum Firmicutes was the predominant bacteria and accounted for 49.04%. The CW groups supported significantly increased the abundance of Bacteroidetes (p < 0.05), as compared with the HW group. The abundance of Bacteroidales_UCG-001, Ruminococcus, and Mitsuokella possessed a higher relative abundance in HW group (p < 0.05). No differences in the bacterial community and fermentation parameters were observed between the sheep fed 0% and 10% wheat (p > 0.05). Ruminal bacterial community structure was significantly correlated with isobutyrite (r2 = 0.4878, p = 0.035) and valerate (r2 = 0.4878, p = 0.013). In conclusion, supplementation of 10% wheat in diet promoted the average daily gain and never altered microbial community structure and fermentation pattern, which can be effectively replace partial corn in Chinese Tibetan Sheep.
Collapse
Affiliation(s)
- Zhanhong Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, People's Republic of China
| | - Sayed Haidar Abbas Raza
- Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Boyan Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, People's Republic of China
| | - Fengshuo Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, People's Republic of China
| | - Zhiyou Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, People's Republic of China
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, People's Republic of China
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Seham Sater Alhelaify
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Seham Saeed Alzahrani
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ohud Muslat Alharthy
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, People's Republic of China
| |
Collapse
|
6
|
Hao Y, Ouyang T, Wang W, Wang Y, Cao Z, Yang H, Guan LL, Li S. Competitive Analysis of Rumen and Hindgut Microbiota Composition and Fermentation Function in Diarrheic and Non-Diarrheic Postpartum Dairy Cows. Microorganisms 2023; 12:23. [PMID: 38257850 PMCID: PMC10818870 DOI: 10.3390/microorganisms12010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024] Open
Abstract
Postpartum dairy cows can develop nutritional diarrhea when their diet is abruptly changed for milk production. However, it is unclear whether nutritional diarrhea develops as a result of gut acidosis and/or dysbiosis. This study aimed to uncover changes in the gastrointestinal microbiota and its fermentation parameters in response to nutritional diarrhea in postpartum dairy cows. Rumen and fecal samples were collected from twenty-four postpartum cows fed with the same diet but with different fecal scores: the low-fecal-score (LFS: diarrheic) group and high-fecal-score (HFS: non-diarrheic) group. A microbiota difference was only observed for fecal microbiota, with the relative abundance of Defluviitaleaceae_UCG-011 and Lachnospiraceae_UCG-001 tending (p < 0.10) to be higher in HFS cows compared to LFS cows, and Frisingicoccus were only detected in HFS cows. The fecal bacterial community in LFS cows had higher robustness (p < 0.05) compared to that in HFS cows, and also had lower negative cohesion (less competitive behaviors) and higher positive cohesion (more cooperative behaviors) (p < 0.05) compared that in to HFS cows. Lower total volatile fatty acids and higher ammonia nitrogen (p < 0.05) were observed in LFS cows' feces compared to HFS cows. The observed shift in fecal bacterial composition, community networks, and metabolites suggests that hindgut dysbiosis could be related to nutritional diarrhea in postpartum cows.
Collapse
Affiliation(s)
- Yangyi Hao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (Z.C.); (H.Y.)
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Tong Ouyang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (Z.C.); (H.Y.)
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (Z.C.); (H.Y.)
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (Z.C.); (H.Y.)
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (Z.C.); (H.Y.)
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (Z.C.); (H.Y.)
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (Z.C.); (H.Y.)
| |
Collapse
|
7
|
Thapa S, Zhou S, O'Hair J, Al Nasr K, Ropelewski A, Li H. Exploring the microbial diversity and characterization of cellulase and hemicellulase genes in goat rumen: a metagenomic approach. BMC Biotechnol 2023; 23:51. [PMID: 38049781 PMCID: PMC10696843 DOI: 10.1186/s12896-023-00821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Goat rumen microbial communities are perceived as one of the most potential biochemical reservoirs of multi-functional enzymes, which are applicable to enhance wide array of bioprocesses such as the hydrolysis of cellulose and hemi-cellulose into fermentable sugar for biofuel and other value-added biochemical production. Even though, the limited understanding of rumen microbial genetic diversity and the absence of effective screening culture methods have impeded the full utilization of these potential enzymes. In this study, we applied culture independent metagenomics sequencing approach to isolate, and identify microbial communities in goat rumen, meanwhile, clone and functionally characterize novel cellulase and xylanase genes in goat rumen bacterial communities. RESULTS Bacterial DNA samples were extracted from goat rumen fluid. Three genomic libraries were sequenced using Illumina HiSeq 2000 for paired-end 100-bp (PE100) and Illumina HiSeq 2500 for paired-end 125-bp (PE125). A total of 435gb raw reads were generated. Taxonomic analysis using Graphlan revealed that Fibrobacter, Prevotella, and Ruminococcus are the most abundant genera of bacteria in goat rumen. SPAdes assembly and prodigal annotation were performed. The contigs were also annotated using the DOE-JGI pipeline. In total, 117,502 CAZymes, comprising endoglucanases, exoglucanases, beta-glucosidases, xylosidases, and xylanases, were detected in all three samples. Two genes with predicted cellulolytic/xylanolytic activities were cloned and expressed in E. coli BL21(DE3). The endoglucanases and xylanase enzymatic activities of the recombinant proteins were confirmed using substrate plate assay and dinitrosalicylic acid (DNS) analysis. The 3D structures of endoglucanase A and endo-1,4-beta xylanase was predicted using the Swiss Model. Based on the 3D structure analysis, the two enzymes isolated from goat's rumen metagenome are unique with only 56-59% similarities to those homologous proteins in protein data bank (PDB) meanwhile, the structures of the enzymes also displayed greater stability, and higher catalytic activity. CONCLUSIONS In summary, this study provided the database resources of bacterial metagenomes from goat's rumen fluid, including gene sequences with annotated functions and methods for gene isolation and over-expression of cellulolytic enzymes; and a wealth of genes in the metabolic pathways affecting food and nutrition of ruminant animals.
Collapse
Affiliation(s)
- Santosh Thapa
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA
- Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Suping Zhou
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA
| | - Joshua O'Hair
- Department of Biological Sciences, College of Life & Physical Sciences, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA
| | - Kamal Al Nasr
- Department of Computer Sciences, College of Engineering, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA
| | - Alexander Ropelewski
- Pittsburgh Supercomputing Center, 300 S. Craig Street, Pittsburgh, PA, 15213, USA
| | - Hui Li
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA.
| |
Collapse
|
8
|
Li D, Yang H, Li Q, Ma K, Wang H, Wang C, Li T, Ma Y. Prickly Ash Seeds improve immunity of Hu sheep by changing the diversity and structure of gut microbiota. Front Microbiol 2023; 14:1273714. [PMID: 38029081 PMCID: PMC10644117 DOI: 10.3389/fmicb.2023.1273714] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Prickly Ash Seeds (PAS), as a traditional Chinese medicinal herb, have pharmacological effects such as anti-asthma, anti-thrombotic, and anti-bacterial, but their impact on gut microbiota is still unclear. This study used a full-length 16 s rRNA gene sequencing technique to determine the effect of adding PAS to the diet on the structure and distribution of gut microbiota in Hu sheep. All lambs were randomly divided into two groups, the CK group was fed with a basal ration, and the LZS group was given a basal diet with 3% of PAS added to the ration. The levels of inflammatory factors (IL-10, IL-1β, and TNF-α) in intestinal tissues were measured by enzyme-linked immunosorbent assay (ELISA) for Hu sheep in the CK and LZS group. The results indicate that PAS can increase the diversity and richness of gut microbiota, and can affect the community composition of gut microbiota. LEfSe analysis revealed that Verrucomicrobiota, Kiritimatiella, WCHB 41, and uncultured_rumen_bacterium were significantly enriched in the LZS group. KEGG pathway analysis found that LZS was significantly higher than the CK group in the Excretory system, Folding, sorting and degradation, and Immune system pathways (p < 0.05). The results of ELISA assay showed that the level of IL-10 was significantly higher in the LZS group than in the CK group (p < 0.05), and the levels of TNF-α and IL-1β were significantly higher in the CK group than in the LZS group (p < 0.05). LEfSe analysis revealed that the dominant flora in the large intestine segment changed from Bacteroidota and Gammaproteobacteria to Akkermansiaceae and Verrucomicrobiae after PAS addition to Hu sheep lambs; the dominant flora in the small intestine segment changed from Lactobacillales and Aeriscardovia to Kiritimatiellae and WCHB1 41. In conclusion, the addition of PAS to sheep diets can increase the number and types of beneficial bacteria in the intestinal tract, improve lamb immunity, and reduce intestinal inflammation. It provides new insights into healthy sheep production.
Collapse
Affiliation(s)
- Dengpan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Hai Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Qiao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Keyan Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Chunhui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| |
Collapse
|
9
|
Liu S, Dong Z, Tang W, Zhou J, Guo L, Gong C, Liu G, Wan D, Yin Y. Dietary iron regulates intestinal goblet cell function and alleviates Salmonella typhimurium invasion in mice. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2006-2019. [PMID: 37340176 DOI: 10.1007/s11427-022-2298-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/31/2023] [Indexed: 06/22/2023]
Abstract
Iron is an important micronutrient that plays a vital role in host defenses and bacterial pathogenicity. As iron treatments increase the risk of infection by stimulating the growth and virulence of bacterial pathogens, their roles in anti-infection immunity have frequently been underestimated. To estimate whether adequate dietary iron intake would help defend against pathogenic bacterial infection, mice were fed iron-deficient (2 mg kg-1 feed), iron-sufficient (35 mg kg-1 feed), or iron-enriched diet (350 mg kg-1 feed) for 12 weeks, followed by oral infection with Salmonella typhimurium. Our results revealed that dietary iron intake improved mucus layer function and decelerated the invasion of the pathogenic bacteria, Salmonella typhimurium. Positive correlations between serum iron and the number of goblet cells and mucin2 were found in response to total iron intake in mice. Unabsorbed iron in the intestinal tract affected the gut microbiota composition, and the abundance of Bacteroidales, family Muribaculaceae, was positively correlated with their mucin2 expression. However, the results from antibiotic-treated mice showed that the dietary iron-regulated mucin layer function was not microbial-dependent. Furthermore, in vitro studies revealed that ferric citrate directly induced mucin2 expression and promoted the proliferation of goblet cells in both ileal and colonic organoids. Thus, dietary iron intake improves serum iron levels, regulates goblet cell regeneration and mucin layer function, and plays a positive role in the prevention of pathogenic bacteria.
Collapse
Affiliation(s)
- Shuan Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Zhenlin Dong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Wenjie Tang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Jian Zhou
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Liu Guo
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Chengyan Gong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Guang Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
10
|
Huang N, Wei Y, Liu M, Yang Z, Yuan K, Chen J, Wu Z, Zheng F, Lei K, He M. Dachaihu decoction ameliorates septic intestinal injury via modulating the gut microbiota and glutathione metabolism as revealed by multi-omics. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116505. [PMID: 37080366 DOI: 10.1016/j.jep.2023.116505] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dachaihu decoction (DCH), a classic formula for Yangming and Shaoyang Syndrome Complex recorded in "Treatise on Cold Damage", has been widely used in treating intestinal disorders and inflammatory diseases with few side effects in China. However, the mechanism of DCH on septic intestinal injury (SII) remains to be explored. AIM OF THE STUDY This study aimed to clarify the mechanism of DCH on SII. MATERIALS AND METHODS SII model of rat, established by cecal ligation and puncture (CLP), was used to study the effect of DCH on SII. 24 h mortality was recorded. Histological changes were observed by H&E staining. The expression of tight junction protein ZO-1 (ZO-1) and mucin2 (MUC2) was determined by immunohistochemical analysis. Secretory IgA (sIgA), diamine oxidase (DAO) and intestinal fatty acid binding protein (iFABP) were determined by enzyme-linked immunosorbent assay (ELISA). IL-1β, IL-6 and TNF-α were measured by ELISA and quantitative Real-time PCR (RT-qPCR). The gut microbiota was analyzed by 16S rRNA sequencing. The potential targets and pathways of DCH in treating SII were analyzed by integrative analysis of transcriptomic and metabolomic methods. Total glutathione (T-GSH), GSH, GSSG (reduced form of GSH), GSH peroxidase (GPX), superoxide dismutase (SOD), malonaldehyde (MDA) and indicators of hepatic and renal function were measured by biochemical kits. RESULTS Medium dose of DCH improved 24 h mortality of SII rats, reduced the pathological changes of ileum, and increased the expression levels of ZO-1, MUC2 and sIgA. DCH decreased DAO, iFABP of serum and IL-1β, IL-6, TNF-α of ileum. DCH improved α- and β-diversity and modulated the structure of gut microbiota, with Escherichia_Shigella decreased and Bacteroides and Ruminococcus increased. GSH metabolism was identified as the key pathway of DCH on SII by integrative analysis of transcriptome and metabolome. GSH/GSSG and the most common indicators of oxidative stress, were validated. Antioxidative T-GSH, GSH, GPX and SOD were increased, while MDA, the mark of lipid peroxidation was downregulated by DCH. Eventually, DCH was proved to be safe and hepato- and nephro-protective. CONCLUSION DCH ameliorated septic intestinal injury possibly by modulating the gut microbiota and enhancing glutathione metabolism of SII rats, without hepatotoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Na Huang
- The Eighth School of Clinical Medicine (Foshan Hospital of Traditional Chinese Medicine), Guangzhou University of Chinese Medicine, Foshan, 528000, China
| | - Yu Wei
- Basic Medical College Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Meng Liu
- Basic Medical College Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Zhen Yang
- The Eighth School of Clinical Medicine (Foshan Hospital of Traditional Chinese Medicine), Guangzhou University of Chinese Medicine, Foshan, 528000, China
| | - Kang Yuan
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Jingli Chen
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Zhixin Wu
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Fanghao Zheng
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Kaijun Lei
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China.
| | - Mingfeng He
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China.
| |
Collapse
|
11
|
Shi T, Zhang T, Wang X, Wang X, Shen W, Guo X, Liu Y, Li Z, Jiang Y. Metagenomic Analysis of in Vitro Ruminal Fermentation Reveals the Role of the Copresent Microbiome in Plant Biomass Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12095-12106. [PMID: 36121066 DOI: 10.1021/acs.jafc.2c03522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In vitro ruminal fermentation is considered an efficient way to degrade crop residue. To better understand the microbial communities and their functions during in vitro ruminal fermentation, the microbiome and short chain fatty acid (SCFA) production were investigated using the metagenomic sequencing and rumen simulation technique (RUSITEC) system. A total of 1677 metagenome-assembled genomes (MAGs) were reconstructed, and 298 MAGs were found copresenting in metagenomic data of the current work and 58 previously ruminal representative samples. Additionally, the domains related to pectin and xylan degradation were overrepresented in the copresent MAGs compared with total MAGs. Among the copresent MAGs, we obtained 14 MAGs with SCFA-synthesis-related genes positively correlated with SCFA concentrations. The MAGs obtained from this study enable a better understanding of dominant microbial communities across in vivo and in vitro ruminal fermentation and show promise for pointing out directions for further research on in vitro ruminal fermentation.
Collapse
Affiliation(s)
- Tao Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Tingting Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Xihong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Xiangnan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan Province, P.R. China
| | - Xi Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Yuqin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Zongjun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi Province, P.R. China
| |
Collapse
|
12
|
Gebeyew K, Chen K, Wassie T, Azad MAK, He J, Jiang W, Song W, He Z, Tan Z. Dietary Amylose/Amylopectin Ratio Modulates Cecal Microbiota and Metabolites in Weaned Goats. Front Nutr 2021; 8:774766. [PMID: 34957184 PMCID: PMC8697430 DOI: 10.3389/fnut.2021.774766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/31/2021] [Indexed: 01/10/2023] Open
Abstract
Increasing the ratio of amylose in the diet can increase the quantity of starch that flows to the large intestine for microbial fermentation. This leads to the alteration of microbiota and metabolite of the hindgut, where the underlying mechanism is not clearly understood. The present study used a combination of 16S amplicon sequencing technology and metabolomics technique to reveal the effects of increasing ratios of amylose/amylopectin on cecal mucosa- and digesta-associated microbiota and their metabolites in young goats. Twenty-seven Xiangdong black female goats with average body weights (9.00 ± 1.12 kg) were used in this study. The goats were randomly allocated to one of the three diets containing starch with 0% amylose corn (T1), 50% high amylose corn (T2), and 100% high amylose corn (T3) for 35 days. Results showed that cecal valerate concentration was higher (P < 0.05) in the T2 group than those in the T1 and T3 groups. The levels of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 were decreased (P < 0.05) in cecal tissue while IL-10 was increased (P < 0.05) in the T2 group when compared with T1 or T3 groups. At the phylum level, the proportion of mucosa-associated Spirochaetes was increased (P < 0.05), while Proteobacteria was deceased by feeding high amylose ratios (P < 0.05). The abundance of Verrucomicrobia was decreased (P < 0.05) in the T3 group compared with the T1 and T2 groups. The abundance of digesta-associated Firmicutes was increased (P < 0.05) while Verrucomicrobia and Tenericutes were deceased (P < 0.05) with the increment of amylose/amylopectin ratios. The LEfSe analysis showed that a diet with 50% high amylose enriched the abundance of beneficial bacteria such as Faecalibacterium and Lactobacillus in the digesta and Akkermansia in the mucosa compared with the T1 diet. The metabolomics results revealed that feeding a diet containing 50% high amylose decreased the concentration of fatty acyls-related metabolites, including dodecanedioic acid, heptadecanoic acid, and stearidonic acid ethyl ester compared with the T1 diet. The results suggested that a diet consisting of 50% high amylose could maintain a better cecal microbiota composition and host immune function.
Collapse
Affiliation(s)
- Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kai Chen
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Teketay Wassie
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Md Abul Kalam Azad
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Weimin Jiang
- Herbivore Nutrition Department, Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Wu Song
- Herbivore Nutrition Department, Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Processes, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Zhang R, Zhong Z, Ma H, Lin L, Xie F, Mao S, Irwin DM, Wang Z, Zhang S. Mucosal Microbiota and Metabolome in the Ileum of Hu Sheep Offered a Low-Grain, Pelleted or Non-pelleted High-Grain Diet. Front Microbiol 2021; 12:718884. [PMID: 34512596 PMCID: PMC8427290 DOI: 10.3389/fmicb.2021.718884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
Alterations in mucosal microbiota and metabolites are critical to intestinal homeostasis and host health. This study used a combination of 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC/MS) to investigate mucosal microbiota and their metabolic profiles in the ileum of Hu sheep fed different diets. Here, we randomly allocated 15 Hu sheep to three diets, a non-pelleted low-grain diet (control diet; CON), a non-pelleted high-grain diet (HG), and a pelleted high-grain diet (HP). After 60 days of treatment, ileal mucosal samples were collected for microbiome and metabolome analysis. The results of principal coordinate analysis and permutation multivariate analysis showed that there was a tendency for microbial differentiation between the CON and HG groups (P < 0.1), although no significant difference between the HG and HP groups was observed (P > 0.05). Compared with the CON diet, the HG diet decreased (P < 0.05) the abundance of some probiotic species (e.g., Sphingomonas and Candidatus Arthromitus) and increased (P < 0.05) the abundance of acid-producing microbiota (e.g., Succiniclasticum, Nesterenkonia, and Alloprevotella) in the ileal mucosa. Compared with the HG diet, the HP diet decreased (P < 0.05) the abundance of Alloprevotella and increased (P < 0.05) the abundance of Mycoplasma in the ileal mucosa. Furthermore, partial least squares discriminant analysis and orthogonal partial least-squared discriminant analysis indicated that different dietary treatments resulted in different metabolic patterns in the ileal mucosa of the CON, HG, and HP groups. The HG diet altered (VIP > 1 and P < 0.05) the metabolic patterns of amino acids, fatty acids, and nucleotides/nucleosides (such as increased amounts of ornithine, tyrosine, cis-9-palmitoleic acid, and adenosine) compared with the CON diet. However, 10 differential metabolites (VIP > 1 and P < 0.05; including tyrosine, ornithine, and cis-9-palmitoleic acid) identified in the HG group exhibited a diametrically opposite trend in the HP group, suggesting that the HP diet could partially eliminate the changes brought upon by the HG diet. Collectively, our findings demonstrate that different diets altered the ileal mucosal microbiota and metabolites and provide new insight into the effects of high-grain diets on the intestinal health of ruminant animals.
Collapse
Affiliation(s)
- Ruiyang Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhiqiang Zhong
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Huiting Ma
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Limei Lin
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fei Xie
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Zhe Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|