1
|
Morais P, Zhang R, Yu YT. Therapeutic Nonsense Suppression Modalities: From Small Molecules to Nucleic Acid-Based Approaches. Biomedicines 2024; 12:1284. [PMID: 38927491 PMCID: PMC11201248 DOI: 10.3390/biomedicines12061284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Nonsense mutations are genetic mutations that create premature termination codons (PTCs), leading to truncated, defective proteins in diseases such as cystic fibrosis, neurofibromatosis type 1, Dravet syndrome, Hurler syndrome, Beta thalassemia, inherited bone marrow failure syndromes, Duchenne muscular dystrophy, and even cancer. These mutations can also trigger a cellular surveillance mechanism known as nonsense-mediated mRNA decay (NMD) that degrades the PTC-containing mRNA. The activation of NMD can attenuate the consequences of truncated, defective, and potentially toxic proteins in the cell. Since approximately 20% of all single-point mutations are disease-causing nonsense mutations, it is not surprising that this field has received significant attention, resulting in a remarkable advancement in recent years. In fact, since our last review on this topic, new examples of nonsense suppression approaches have been reported, namely new ways of promoting the translational readthrough of PTCs or inhibiting the NMD pathway. With this review, we update the state-of-the-art technologies in nonsense suppression, focusing on novel modalities with therapeutic potential, such as small molecules (readthrough agents, NMD inhibitors, and molecular glue degraders); antisense oligonucleotides; tRNA suppressors; ADAR-mediated RNA editing; targeted pseudouridylation; and gene/base editing. While these various modalities have significantly advanced in their development stage since our last review, each has advantages (e.g., ease of delivery and specificity) and disadvantages (manufacturing complexity and off-target effect potential), which we discuss here.
Collapse
Affiliation(s)
- Pedro Morais
- Drug Metabolism and Pharmacokinetics, Research and Development, Bayer Pharmaceuticals, 42113 Wuppertal, Germany
| | - Rui Zhang
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;
| | - Yi-Tao Yu
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;
| |
Collapse
|
2
|
Erban T, Markovic M, Sopko B. Sublethal acetamiprid exposure induces immunity, suppresses pathways linked to juvenile hormone synthesis in queens and affects cycle-related signaling in emerging bees. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123901. [PMID: 38556147 DOI: 10.1016/j.envpol.2024.123901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Acetamiprid is the only neonicotinoid registered in the European Union because the risks of neonicotinoids to honey bees and other pollinators are strictly regulated. Herein, we orally exposed honey bee colonies to sublethal concentrations of acetamiprid (20 μg/L) under isolated conditions. After one month of continuous exposure, the emerging bees and queens were collected and analyzed via high-throughput label-free quantitative proteomics using a data-independent acquisition strategy. Six and 34 significantly differentially expressed proteins (DEPs) were identified in the emerging bees and queens, respectively. Mrjp3 was the only DEP found in both sample types/castes, and its opposite regulation illustrated a differential response. The DEPs in the emerging bees (H/ACA RNP, Rap1GAP, Mrjp3, and JHE) suggested that sublethal exposure to acetamiprid affected cell cycle-related signaling, which may affect the life history of workers in the colony. The DEPs with increased levels in queens, such as Mrjps 1-4 and 6-7, hymenoptaecin, and apidaecin 22, indicated an activated immune response. Additionally, the level of farnesyl pyrophosphate synthase (FPPS), which is essential for the mevalonate pathway and juvenile hormone biosynthesis, was significantly decreased in queens. The impaired utilization of juvenile hormone in queens supported the identification of additional DEPs. Furthermore, the proteome changes suggested the existence of increased neonicotinoid detoxification by UDP-glucuronosyltransferase and increased amino acid metabolism. The results suggest that the continuous exposure of bee colonies to acetamiprid at low doses (nanograms per gram in feed) may pose a threat to the colonies. The different exposure routes and durations for the emerging bees and queens in our experiment must be considered, i.e., the emerging bees were exposed as larvae via feeding royal jelly and beebread provided by workers (nurse bees), whereas the queens were fed royal jelly throughout the experiment. The biological consequences of the proteomic changes resulting from sublethal/chronic exposure require future determination.
Collapse
Affiliation(s)
- Tomas Erban
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia.
| | - Martin Markovic
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia
| | - Bruno Sopko
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia
| |
Collapse
|
3
|
Shi D, Wang B, Li H, Lian Y, Ma Q, Liu T, Cao M, Ma Y, Shi L, Yuan W, Shi J, Chu Y. Pseudouridine synthase 1 regulates erythropoiesis via transfer RNAs pseudouridylation and cytoplasmic translation. iScience 2024; 27:109265. [PMID: 38450158 PMCID: PMC10915626 DOI: 10.1016/j.isci.2024.109265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/21/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
Pseudouridylation plays a regulatory role in various physiological and pathological processes. A prime example is the mitochondrial myopathy, lactic acidosis, and sideroblastic anemia syndrome (MLASA), characterized by defective pseudouridylation resulting from genetic mutations in pseudouridine synthase 1 (PUS1). However, the roles and mechanisms of pseudouridylation in normal erythropoiesis and MLASA-related anemia remain elusive. We established a mouse model carrying a point mutation (R110W) in the enzymatic domain of PUS1, mimicking the common mutation in human MLASA. Pus1-mutant mice exhibited anemia at 4 weeks old. Impaired mitochondrial oxidative phosphorylation was also observed in mutant erythroblasts. Mechanistically, mutant erythroblasts showed defective pseudouridylation of targeted tRNAs, altered tRNA profiles, decreased translation efficiency of ribosomal protein genes, and reduced globin synthesis, culminating in ineffective erythropoiesis. Our study thus provided direct evidence that pseudouridylation participates in erythropoiesis in vivo. We demonstrated the critical role of pseudouridylation in regulating tRNA homeostasis, cytoplasmic translation, and erythropoiesis.
Collapse
Affiliation(s)
- Deyang Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- Department of Hematology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Bichen Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Haoyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yu Lian
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Qiuyi Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Tong Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Mutian Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Lei Shi
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
4
|
Pederiva C, Trevisan DM, Peirasmaki D, Chen S, Savage SA, Larsson O, Ule J, Baranello L, Agostini F, Farnebo M. Control of protein synthesis through mRNA pseudouridylation by dyskerin. SCIENCE ADVANCES 2023; 9:eadg1805. [PMID: 37506213 PMCID: PMC10381945 DOI: 10.1126/sciadv.adg1805] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Posttranscriptional modifications of mRNA have emerged as regulators of gene expression. Although pseudouridylation is the most abundant, its biological role remains poorly understood. Here, we demonstrate that the pseudouridine synthase dyskerin associates with RNA polymerase II, binds to thousands of mRNAs, and is responsible for their pseudouridylation, an action that occurs in chromatin and does not appear to require a guide RNA with full complementarity. In cells lacking dyskerin, mRNA pseudouridylation is reduced, while at the same time, de novo protein synthesis is enhanced, indicating that this modification interferes with translation. Accordingly, mRNAs with fewer pseudouridines due to knockdown of dyskerin are translated more efficiently. Moreover, mRNA pseudouridylation is severely reduced in patients with dyskeratosis congenita caused by inherited mutations in the gene encoding dyskerin (i.e., DKC1). Our findings demonstrate that pseudouridylation by dyskerin modulates mRNA translatability, with important implications for both normal development and disease.
Collapse
Affiliation(s)
- Chiara Pederiva
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Sweden
| | - Davide M. Trevisan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14152, Sweden
| | - Dimitra Peirasmaki
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Sweden
| | - Shan Chen
- Department of Oncology and Pathology, Karolinska Institutet, Solna 17165, Sweden
- Science for Life Laboratory, Stockholm 17165, Sweden
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20852, USA
| | - Ola Larsson
- Department of Oncology and Pathology, Karolinska Institutet, Solna 17165, Sweden
- Science for Life Laboratory, Stockholm 17165, Sweden
| | - Jernej Ule
- The Francis Crick Institute, London NW1 1AT, UK
- UK Dementia Research Institute, King’s College London, London W1T 7NF, UK
- National Institute of Chemistry, 1001 Ljubljana, Slovenia
| | - Laura Baranello
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Sweden
| | - Federico Agostini
- Science for Life Laboratory, Stockholm 17165, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna 17165, Sweden
| | - Marianne Farnebo
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14152, Sweden
| |
Collapse
|
5
|
Breznak SM, Peng Y, Deng L, Kotb NM, Flamholz Z, Rapisarda IT, Martin ET, LaBarge KA, Fabris D, Gavis ER, Rangan P. H/ACA snRNP-dependent ribosome biogenesis regulates translation of polyglutamine proteins. SCIENCE ADVANCES 2023; 9:eade5492. [PMID: 37343092 PMCID: PMC10284551 DOI: 10.1126/sciadv.ade5492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
Stem cells in many systems, including Drosophila germline stem cells (GSCs), increase ribosome biogenesis and translation during terminal differentiation. Here, we show that the H/ACA small nuclear ribonucleoprotein (snRNP) complex that promotes pseudouridylation of ribosomal RNA (rRNA) and ribosome biogenesis is required for oocyte specification. Reducing ribosome levels during differentiation decreased the translation of a subset of messenger RNAs that are enriched for CAG trinucleotide repeats and encode polyglutamine-containing proteins, including differentiation factors such as RNA-binding Fox protein 1. Moreover, ribosomes were enriched at CAG repeats within transcripts during oogenesis. Increasing target of rapamycin (TOR) activity to elevate ribosome levels in H/ACA snRNP complex-depleted germlines suppressed the GSC differentiation defects, whereas germlines treated with the TOR inhibitor rapamycin had reduced levels of polyglutamine-containing proteins. Thus, ribosome biogenesis and ribosome levels can control stem cell differentiation via selective translation of CAG repeat-containing transcripts.
Collapse
Affiliation(s)
- Shane M. Breznak
- Department of Biological Sciences, RNA Institute, University at Albany, 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222, USA
| | - Yingshi Peng
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Limin Deng
- Department of Biological Sciences, RNA Institute, University at Albany, 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222, USA
- Department of Chemistry, University of Connecticut, 55N Eagleville Rd, Storrs, CT 06269, USA
| | - Noor M. Kotb
- Department of Biological Sciences, RNA Institute, University at Albany, 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222, USA
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY 12144, USA
| | - Zachary Flamholz
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ian T. Rapisarda
- Department of Biological Sciences, RNA Institute, University at Albany, 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222, USA
- Lake Erie College of Osteopathic Medicine, College of Medicine, 1858 W Grandview Blvd, Erie, PA 16509, USA
| | - Elliot T. Martin
- Department of Biological Sciences, RNA Institute, University at Albany, 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222, USA
| | - Kara A. LaBarge
- Department of Biological Sciences, RNA Institute, University at Albany, 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222, USA
| | - Dan Fabris
- Department of Biological Sciences, RNA Institute, University at Albany, 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222, USA
- Department of Chemistry, University of Connecticut, 55N Eagleville Rd, Storrs, CT 06269, USA
| | - Elizabeth R. Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Prashanth Rangan
- Department of Biological Sciences, RNA Institute, University at Albany, 1400 Washington Avenue, LSRB 2033D, Albany, NY 12222, USA
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
6
|
Tokunaga M, Imamura T. Emerging concepts involving inhibitory and activating RNA functionalization towards the understanding of microcephaly phenotypes and brain diseases in humans. Front Cell Dev Biol 2023; 11:1168072. [PMID: 37408531 PMCID: PMC10318543 DOI: 10.3389/fcell.2023.1168072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Microcephaly is characterized as a small head circumference, and is often accompanied by developmental disorders. Several candidate risk genes for this disease have been described, and mutations in non-coding regions are occasionally found in patients with microcephaly. Various non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), SINEUPs, telomerase RNA component (TERC), and promoter-associated lncRNAs (pancRNAs) are now being characterized. These ncRNAs regulate gene expression, enzyme activity, telomere length, and chromatin structure through RNA binding proteins (RBPs)-RNA interaction. Elucidating the potential roles of ncRNA-protein coordination in microcephaly pathogenesis might contribute to its prevention or recovery. Here, we introduce several syndromes whose clinical features include microcephaly. In particular, we focus on syndromes for which ncRNAs or genes that interact with ncRNAs may play roles. We discuss the possibility that the huge ncRNA field will provide possible new therapeutic approaches for microcephaly and also reveal clues about the factors enabling the evolutionary acquisition of the human-specific "large brain."
Collapse
|
7
|
Keszthelyi TM, Tory K. The importance of pseudouridylation: human disorders related to the fifth nucleoside. Biol Futur 2023:10.1007/s42977-023-00158-3. [PMID: 37000312 DOI: 10.1007/s42977-023-00158-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/09/2023] [Indexed: 04/01/2023]
Abstract
Pseudouridylation is one of the most abundant RNA modifications in eukaryotes, making pseudouridine known as the "fifth nucleoside." This highly conserved alteration affects all non-coding and coding RNA types. Its role and importance have been increasingly widely researched, especially considering that its absence or damage leads to serious hereditary diseases. Here, we summarize the human genetic disorders described to date that are related to the participants of the pseudouridylation process.
Collapse
Affiliation(s)
| | - Kálmán Tory
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Webster SF, Ghalei H. Maturation of small nucleolar RNAs: from production to function. RNA Biol 2023; 20:715-736. [PMID: 37796118 PMCID: PMC10557570 DOI: 10.1080/15476286.2023.2254540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Small Nucleolar RNAs (snoRNAs) are an abundant group of non-coding RNAs with well-defined roles in ribosomal RNA processing, folding and chemical modification. Besides their classic roles in ribosome biogenesis, snoRNAs are also implicated in several other cellular activities including regulation of splicing, transcription, RNA editing, cellular trafficking, and miRNA-like functions. Mature snoRNAs must undergo a series of processing steps tightly regulated by transiently associating factors and coordinated with other cellular processes including transcription and splicing. In addition to their mature forms, snoRNAs can contribute to gene expression regulation through their derivatives and degradation products. Here, we review the current knowledge on mechanisms of snoRNA maturation, including the different pathways of processing, and the regulatory mechanisms that control snoRNA levels and complex assembly. We also discuss the significance of studying snoRNA maturation, highlight the gaps in the current knowledge and suggest directions for future research in this area.
Collapse
Affiliation(s)
- Sarah F. Webster
- Biochemistry, Cell, and Developmental Biology Graduate Program, Emory University, Atlanta, Georgia, USA
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Homa Ghalei
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Thalalla Gamage S, Bortolin-Cavaillé ML, Link C, Bryson K, Sas-Chen A, Schwartz S, Cavaillé J, Meier JL. Antisense pairing and SNORD13 structure guide RNA cytidine acetylation. RNA (NEW YORK, N.Y.) 2022; 28:1582-1596. [PMID: 36127124 PMCID: PMC9670809 DOI: 10.1261/rna.079254.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/02/2022] [Indexed: 05/21/2023]
Abstract
N4-acetylcytidine (ac4C) is an RNA nucleobase found in all domains of life. The establishment of ac4C in helix 45 (h45) of human 18S ribosomal RNA (rRNA) requires the combined activity of the acetyltransferase NAT10 and the box C/D snoRNA SNORD13. However, the molecular mechanisms governing RNA-guided nucleobase acetylation in humans remain unexplored. After applying comparative sequence analysis and site-directed mutagenesis to provide evidence that SNORD13 folds into three main RNA helices, we report two assays that enable the study of SNORD13-dependent RNA acetylation in human cells. First, we demonstrate that ectopic expression of SNORD13 rescues h45 in a SNORD13 knockout cell line. Next, we show that mutant snoRNAs can be used in combination with nucleotide resolution ac4C sequencing to define structure and sequence elements critical for SNORD13 function. Finally, we develop a second method that reports on the substrate specificity of endogenous NAT10-SNORD13 via mutational analysis of an ectopically expressed pre-rRNA substrate. By combining mutational analysis of these reconstituted systems with nucleotide resolution ac4C sequencing, our studies reveal plasticity in the molecular determinants underlying RNA-guided cytidine acetylation that is distinct from deposition of other well-studied rRNA modifications (e.g., pseudouridine). Overall, our studies provide a new approach to reconstitute RNA-guided cytidine acetylation in human cells as well as nucleotide resolution insights into the mechanisms governing this process.
Collapse
Affiliation(s)
| | - Marie-Line Bortolin-Cavaillé
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse III; UPS; CNRS; 31062 Cedex 9, Toulouse, France
| | - Courtney Link
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Keri Bryson
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Aldema Sas-Chen
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 6195001 Tel Aviv, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Jérôme Cavaillé
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse III; UPS; CNRS; 31062 Cedex 9, Toulouse, France
| | - Jordan L Meier
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, USA
| |
Collapse
|
10
|
Nagato Y, Tomikawa C, Yamaji H, Soma A, Takai K. Intron-Dependent or Independent Pseudouridylation of Precursor tRNA Containing Atypical Introns in Cyanidioschyzon merolae. Int J Mol Sci 2022; 23:ijms232012058. [PMID: 36292915 PMCID: PMC9602550 DOI: 10.3390/ijms232012058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Eukaryotic precursor tRNAs (pre-tRNAs) often have an intron between positions 37 and 38 of the anticodon loop. However, atypical introns are found in some eukaryotes and archaea. In an early-diverged red alga Cyanidioschyzon merolae, the tRNAIle(UAU) gene contains three intron coding regions, located in the D-, anticodon, and T-arms. In this study, we focused on the relationship between the intron removal and formation of pseudouridine (Ψ), one of the most universally modified nucleosides. It had been reported that yeast Pus1 is a multiple-site-specific enzyme that synthesizes Ψ34 and Ψ36 in tRNAIle(UAU) in an intron-dependent manner. Unexpectedly, our biochemical experiments showed that the C. merolae ortholog of Pus1 pseudouridylated an intronless tRNAIle(UAU) and that the modification position was determined to be 55 which is the target of Pus4 but not Pus1 in yeast. Furthermore, unlike yeast Pus1, cmPus1 mediates Ψ modification at positions 34, 36, and/or 55 only in some specific intron-containing pre-tRNAIle(UAU) variants. cmPus4 was confirmed to be a single-site-specific enzyme that only converts U55 to Ψ, in a similar manner to yeast Pus4. cmPus4 did not catalyze the pseudouridine formation in pre-tRNAs containing an intron in the T-arm.
Collapse
Affiliation(s)
- Yasuha Nagato
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Ehime, Japan
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Ehime, Japan
- Correspondence: ; Tel.: +81-89-927-9947
| | - Hideyuki Yamaji
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Ehime, Japan
| | - Akiko Soma
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Chiba, Japan
| | - Kazuyuki Takai
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Ehime, Japan
| |
Collapse
|
11
|
Barozzi C, Zacchini F, Asghar S, Montanaro L. Ribosomal RNA Pseudouridylation: Will Newly Available Methods Finally Define the Contribution of This Modification to Human Ribosome Plasticity? Front Genet 2022; 13:920987. [PMID: 35719370 PMCID: PMC9198423 DOI: 10.3389/fgene.2022.920987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/09/2022] [Indexed: 12/05/2022] Open
Abstract
In human rRNA, at least 104 specific uridine residues are modified to pseudouridine. Many of these pseudouridylation sites are located within functionally important ribosomal domains and can influence ribosomal functional features. Until recently, available methods failed to reliably quantify the level of modification at each specific rRNA site. Therefore, information obtained so far only partially explained the degree of regulation of pseudouridylation in different physiological and pathological conditions. In this focused review, we provide a summary of the methods that are now available for the study of rRNA pseudouridylation, discussing the perspectives that newly developed approaches are offering.
Collapse
Affiliation(s)
- Chiara Barozzi
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Alma Mater Studiorum—Università di Bologna, Bologna, Italy
- Centro di Ricerca Biomedica Applicata, CRBA, Universita di Bologna, Policlinico di Sant’Orsola, Bologna, Italy
| | - Federico Zacchini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Alma Mater Studiorum—Università di Bologna, Bologna, Italy
- Centro di Ricerca Biomedica Applicata, CRBA, Universita di Bologna, Policlinico di Sant’Orsola, Bologna, Italy
| | - Sidra Asghar
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Alma Mater Studiorum—Università di Bologna, Bologna, Italy
- Centro di Ricerca Biomedica Applicata, CRBA, Universita di Bologna, Policlinico di Sant’Orsola, Bologna, Italy
| | - Lorenzo Montanaro
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Alma Mater Studiorum—Università di Bologna, Bologna, Italy
- Centro di Ricerca Biomedica Applicata, CRBA, Universita di Bologna, Policlinico di Sant’Orsola, Bologna, Italy
- Departmental Program in Laboratory Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
12
|
Jüttner M, Ferreira-Cerca S. A Comparative Perspective on Ribosome Biogenesis: Unity and Diversity Across the Tree of Life. Methods Mol Biol 2022; 2533:3-22. [PMID: 35796979 PMCID: PMC9761495 DOI: 10.1007/978-1-0716-2501-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Ribosomes are universally conserved ribonucleoprotein complexes involved in the decoding of the genetic information contained in messenger RNAs into proteins. Accordingly, ribosome biogenesis is a fundamental cellular process required for functional ribosome homeostasis and to preserve satisfactory gene expression capability.Although the ribosome is universally conserved, its biogenesis shows an intriguing degree of variability across the tree of life . These differences also raise yet unresolved questions. Among them are (a) what are, if existing, the remaining ancestral common principles of ribosome biogenesis ; (b) what are the molecular impacts of the evolution history and how did they contribute to (re)shape the ribosome biogenesis pathway across the tree of life ; (c) what is the extent of functional divergence and/or convergence (functional mimicry), and in the latter case (if existing) what is the molecular basis; (d) considering the universal ribosome conservation, what is the capability of functional plasticity and cellular adaptation of the ribosome biogenesis pathway?In this review, we provide a brief overview of ribosome biogenesis across the tree of life and try to illustrate some potential and/or emerging answers to these unresolved questions.
Collapse
Affiliation(s)
- Michael Jüttner
- Biochemistry III-Regensburg Center for Biochemistry-Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Sébastien Ferreira-Cerca
- Biochemistry III-Regensburg Center for Biochemistry-Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
13
|
Jády BE, Ketele A, Moulis D, Kiss T. Guide RNA acrobatics: positioning consecutive uridines for pseudouridylation by H/ACA pseudouridylation loops with dual guide capacity. Genes Dev 2022; 36:70-83. [PMID: 34916304 PMCID: PMC8763049 DOI: 10.1101/gad.349072.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022]
Abstract
Site-specific pseudouridylation of human ribosomal and spliceosomal RNAs is directed by H/ACA guide RNAs composed of two hairpins carrying internal pseudouridylation guide loops. The distal "antisense" sequences of the pseudouridylation loop base-pair with the target RNA to position two unpaired target nucleotides 5'-UN-3', including the 5' substrate U, under the base of the distal stem topping the guide loop. Therefore, each pseudouridylation loop is expected to direct synthesis of a single pseudouridine (Ψ) in the target sequence. However, in this study, genetic depletion and restoration and RNA mutational analyses demonstrate that at least four human H/ACA RNAs (SNORA53, SNORA57, SCARNA8, and SCARNA1) carry pseudouridylation loops supporting efficient and specific synthesis of two consecutive pseudouridines (ΨΨ or ΨNΨ) in the 28S (Ψ3747/Ψ3749), 18S (Ψ1045/Ψ1046), and U2 (Ψ43/Ψ44 and Ψ89/Ψ91) RNAs, respectively. In order to position two substrate Us for pseudouridylation, the dual guide loops form alternative base-pairing interactions with their target RNAs. This remarkable structural flexibility of dual pseudouridylation loops provides an unexpected versatility for RNA-directed pseudouridylation without compromising its efficiency and accuracy. Besides supporting synthesis of at least 6% of human ribosomal and spliceosomal Ψs, evidence indicates that dual pseudouridylation loops also participate in pseudouridylation of yeast and archaeal rRNAs.
Collapse
Affiliation(s)
- Beáta E Jády
- Molecular, Cellular, and Developmental Biology Department (MCD) UMR 5077, Centre de Biologie Intégrative (CBI), University of Toulouse, Centre National de la Recherche Scientifique, 31062 Toulouse, France
| | - Amandine Ketele
- Molecular, Cellular, and Developmental Biology Department (MCD) UMR 5077, Centre de Biologie Intégrative (CBI), University of Toulouse, Centre National de la Recherche Scientifique, 31062 Toulouse, France
| | - Dylan Moulis
- Molecular, Cellular, and Developmental Biology Department (MCD) UMR 5077, Centre de Biologie Intégrative (CBI), University of Toulouse, Centre National de la Recherche Scientifique, 31062 Toulouse, France
| | - Tamás Kiss
- Molecular, Cellular, and Developmental Biology Department (MCD) UMR 5077, Centre de Biologie Intégrative (CBI), University of Toulouse, Centre National de la Recherche Scientifique, 31062 Toulouse, France
- Biological Research Centre, 6726 Szeged, Hungary
| |
Collapse
|
14
|
Ferreira-Cerca S. The dark side of the ribosome life cycle. RNA Biol 2022; 19:1045-1049. [PMID: 36082947 PMCID: PMC9467602 DOI: 10.1080/15476286.2022.2121421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Thanks to genetics, biochemistry, and structural biology many features of the ribosome´s life cycles in models of bacteria, eukaryotes, and some organelles have been revealed to near-atomic details. Collectively, these studies have provided a very detailed understanding of what are now well-established prototypes for ribosome biogenesis and function as viewed from a 'classical' model organisms perspective. However, very important challenges remain ahead to explore the functional and structural diversity of both ribosome biogenesis and function across the biological diversity on earth. Particularly, the 'third domain of life', the archaea, and also many non-model bacterial and eukaryotic organisms have been comparatively neglected. Importantly, characterizing these additional biological systems will not only offer a yet untapped window to enlighten the evolution of ribosome biogenesis and function but will also help to unravel fundamental principles of molecular adaptation of these central cellular processes.
Collapse
Affiliation(s)
- Sébastien Ferreira-Cerca
- Regensburg Center for Biochemistry, Biochemistry III - Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
15
|
Skeparnias I, Zhang J. Cooperativity and Interdependency between RNA Structure and RNA-RNA Interactions. Noncoding RNA 2021; 7:ncrna7040081. [PMID: 34940761 PMCID: PMC8704770 DOI: 10.3390/ncrna7040081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Complex RNA–RNA interactions are increasingly known to play key roles in numerous biological processes from gene expression control to ribonucleoprotein granule formation. By contrast, the nature of these interactions and characteristics of their interfaces, especially those that involve partially or wholly structured RNAs, remain elusive. Herein, we discuss different modalities of RNA–RNA interactions with an emphasis on those that depend on secondary, tertiary, or quaternary structure. We dissect recently structurally elucidated RNA–RNA complexes including RNA triplexes, riboswitches, ribozymes, and reverse transcription complexes. These analyses highlight a reciprocal relationship that intimately links RNA structure formation with RNA–RNA interactions. The interactions not only shape and sculpt RNA structures but also are enabled and modulated by the structures they create. Understanding this two-way relationship between RNA structure and interactions provides mechanistic insights into the expanding repertoire of noncoding RNA functions, and may inform the design of novel therapeutics that target RNA structures or interactions.
Collapse
|
16
|
Garus A, Autexier C. Dyskerin: an essential pseudouridine synthase with multifaceted roles in ribosome biogenesis, splicing, and telomere maintenance. RNA (NEW YORK, N.Y.) 2021; 27:1441-1458. [PMID: 34556550 PMCID: PMC8594475 DOI: 10.1261/rna.078953.121] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dyskerin and its homologs are ancient and conserved enzymes that catalyze the most common post-transcriptional modification found in cells, pseudouridylation. The resulting pseudouridines provide stability to RNA molecules and regulate ribosome biogenesis and splicing events. Dyskerin does not act independently-it is the core component of a protein heterotetramer, which associates with RNAs that contain the H/ACA motif. The variety of H/ACA RNAs that guide the function of this ribonucleoprotein (RNP) complex highlights the diversity of cellular processes in which dyskerin participates. When associated with small nucleolar (sno) RNAs, it regulates ribosomal (r) RNAs and ribosome biogenesis. By interacting with small Cajal body (sca) RNAs, it targets small nuclear (sn) RNAs to regulate pre-mRNA splicing. As a component of the telomerase holoenzyme, dyskerin binds to the telomerase RNA to modulate telomere maintenance. In a disease context, dyskerin malfunction can result in multiple detrimental phenotypes. Mutations in DKC1, the gene that encodes dyskerin, cause the premature aging syndrome X-linked dyskeratosis congenita (X-DC), a still incurable disorder that typically leads to bone marrow failure. In this review, we present the classical and most recent findings on this essential protein, discussing the evolutionary, structural, and functional aspects of dyskerin and the H/ACA RNP. The latest research underscores the role that dyskerin plays in the regulation of gene expression, translation efficiency, and telomere maintenance, along with the impacts that defective dyskerin has on aging, cell proliferation, haematopoietic potential, and cancer.
Collapse
Affiliation(s)
- Alexandre Garus
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| |
Collapse
|
17
|
Londei P, Ferreira-Cerca S. Ribosome Biogenesis in Archaea. Front Microbiol 2021; 12:686977. [PMID: 34367089 PMCID: PMC8339473 DOI: 10.3389/fmicb.2021.686977] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/14/2021] [Indexed: 12/02/2022] Open
Abstract
Making ribosomes is a major cellular process essential for the maintenance of functional ribosome homeostasis and to ensure appropriate gene expression. Strikingly, although ribosomes are universally conserved ribonucleoprotein complexes decoding the genetic information contained in messenger RNAs into proteins, their biogenesis shows an intriguing degree of variability across the tree of life. In this review, we summarize our knowledge on the least understood ribosome biogenesis pathway: the archaeal one. Furthermore, we highlight some evolutionary conserved and divergent molecular features of making ribosomes across the tree of life.
Collapse
Affiliation(s)
- Paola Londei
- Department of Molecular Medicine, University of Rome Sapienza, Rome, Italy
| | - Sébastien Ferreira-Cerca
- Biochemistry III - Regensburg Center for Biochemistry, Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|