1
|
Nhlabathi-Chidi MK, Mametja NM, Nkambule TTI, Feleni U, Masebe T, Managa M. An Overview of the Current Approaches in Drug-Resistant Bacterial Removal Within Wastewaters: Can We Move Towards Nanomagnet-Porphyrin Hybrids for Antimicrobial Photodynamic Inactivation (aPDI). Curr Microbiol 2025; 82:249. [PMID: 40251299 PMCID: PMC12008068 DOI: 10.1007/s00284-025-04222-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/26/2025] [Indexed: 04/20/2025]
Abstract
The rise in the occurrence of drug-resistant bacteria within wastewater treatment plants (WWTPs) and their dissemination into the ecosystem from the same WWTPs has created a prevalent crisis affecting the integrity of human life and water sources worldwide. Antimicrobial Photodynamic Inactivation (aPDI) can be explored in an effort to address this crisis and preserve natures integrity as it can incorporate environmentally sustainable and cost-effective disinfection strategies within wastewater treatment plants. aPDI is a technique introduced as a strategic approach to inactivate harmful Drug-Resistant Bacteria (DRB) that are ineffectively removed with current wastewater treatment strategies. The incorporation of Nanomagnet-Porphyrin Hybrid (NMPH) based aPDI illustrates notable microbial inactivation and innovatively introduces prospects of achieving affordable and ecologically beneficial disinfection within wastewaters since they can be recycled and reused. Furthermore the added advantage of NMPHs based aPDI lies in the generation of a high quantum yield of cytotoxic 1O2 due to a strong visible absorption ascribed to π-π* electronic transitions within the porphyrins. These properties are largely ascribed to the high coefficient of light absorption in a broad wavelength range allowing them to generate reactive oxygen species through a spin-forbidden intersystem crossing mechanism allowing them to demonstrate express disinfection of harmful pathogens. This review addresses the high inactivation profiles of NMPH based aPDI, its low operating costs and reusability as the potential of establishing NMPH based aPDI in nanotechnology wastewater remediation and microbial disinfection applications. The authors believe that this systematic review can stimulate new researchers and assist in the future development of this important field of research, especially when it comes to the aquatic environment and natural water resources and given the adequate attention this method can aid globally but more so within emerging economies to ensure potable water is delivered to all people.
Collapse
Affiliation(s)
- Mbalenhle Kabelo Nhlabathi-Chidi
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1710, South Africa
| | - Neo Mokgadi Mametja
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences (CAES), University of South Africa, Johannesburg, 1710, Florida, South Africa
| | - Thabo Thokozani Innocent Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1710, South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1710, South Africa
| | - Tracy Masebe
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences (CAES), University of South Africa, Johannesburg, 1710, Florida, South Africa
| | - Muthumuni Managa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1710, South Africa.
| |
Collapse
|
2
|
Boulainine D, Benhamrouche A, Ballesté E, Mezaache-Aichour S, García-Aljaro C. Fate of antibiotic resistance genes under different wastewater treatments and environmental conditions in an Algerian watershed. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126179. [PMID: 40180301 DOI: 10.1016/j.envpol.2025.126179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
In recent decades, antibiotic resistance has become a major health threat. This study evaluates the efficiency of two wastewater treatment plants (WWTP), conventional activated sludge and advanced filtration-based Enviro-Septic, for removing antibiotic resistance genes (ARGs) and their prevalence in an Algerian watershed. Thirty-five wastewater and 122 river samples were collected. Sampling covered a 50 km transect, from a low-pollution site to a water reservoir, at six sites. The study analyzed different fecal indicators (E. coli (EC), spores of sulfite-reducing clostridia (SRC), somatic coliphages (SOMCPH)), CrAssphage (CrAssPH)), and three ARGs (blaTEM, tetW, and sul1). Mean concentrations in raw sewage from the conventional and Enviro-Septic WWTPs were ∼7.1 and 6.4 log10 (CFU/100 ml) for EC, 6.2 log10 (PFU or CFU)/100 ml for SOMCPH and SRC in both treatments, and ∼7.5 and 5.2 for CrAssPH, respectively. The conventional WWTP achieved reductions of ∼4 log10 for EC and SOMCPH, 3.5 log10 for CrAssPH, and 1 log10 for SRC. The Enviro-Septic system showed similar efficacy for EC and SRC but lower for SOMCPH (2.8 log10) and CrAssPH (2.5 log10). The mean concentrations (log10 GC/100 ml) of ARGs in raw sewage of the conventional and the Enviro-Septic WWTP were 8.6 and 7.3 for tetW, 9.4 and 8.1 for sul1, 8.4 and 6.3 for blaTEM, respectively. Both treatments achieved reductions of 2.9-3 log10 for all ARGs. All river samples tested positive for the three ARGs, with lower concentrations at less fecally polluted sites, showing a reduction of up to 4 log10. Strong correlations (p < 0.05) were observed between culturable indicators, CrAssPH, and ARGs (ρ 0.58-0.96), indicating a strong association between ARGs and human fecal contamination, although other environmental sources cannot be ruled out. This study provides insights into ARG dynamics and supports strategies to mitigate their spread, and protect public health.
Collapse
Affiliation(s)
- Dalal Boulainine
- Laboratory of Applied Microbiology, Faculty of Natural and Life Sciences, University Ferhat Abbas, Sétif 1, Sétif, 19137, Algeria; Departament de Genètica, Microbiologia i Estadística, Secció Microbiologia, Virologia i Biotecnologia, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028, Barcelona, Spain.
| | - Aziz Benhamrouche
- Department of Earth Sciences, University Ferhat Abbas, Sétif 1, Sétif, 19137, Algeria.
| | - Elisenda Ballesté
- Departament de Genètica, Microbiologia i Estadística, Secció Microbiologia, Virologia i Biotecnologia, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028, Barcelona, Spain; Institut de Recerca de l'Aigua (IDRA), Universitat de Barcelona (UB), C. Montalegre, 6, 08001, Barcelona, Spain
| | - Samia Mezaache-Aichour
- Laboratory of Applied Microbiology, Faculty of Natural and Life Sciences, University Ferhat Abbas, Sétif 1, Sétif, 19137, Algeria.
| | - Cristina García-Aljaro
- Departament de Genètica, Microbiologia i Estadística, Secció Microbiologia, Virologia i Biotecnologia, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028, Barcelona, Spain; Institut de Recerca de l'Aigua (IDRA), Universitat de Barcelona (UB), C. Montalegre, 6, 08001, Barcelona, Spain.
| |
Collapse
|
3
|
Woodford L, Messer LF, Ormsby MJ, White HL, Fellows R, Quilliam RS. Exploiting microplastics and the plastisphere for the surveillance of human pathogenic bacteria discharged into surface waters in wastewater effluent. WATER RESEARCH 2025; 281:123563. [PMID: 40184703 DOI: 10.1016/j.watres.2025.123563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Discharge from wastewater treatment plants (WWTPs) is a well-characterised source of human pathogens and antimicrobial resistance genes entering the environment. However, determining whether pathogens released from effluent into surface waters are viable, and consequently pose a risk to human health, is hindered by the use of transient grab-sampling monitoring approaches. Here we present a novel surveillance system using low-cost microparticles (polyethylene, cork and rubber) deployed upstream and downstream of a WWTP effluent pipe, that exploits the ability of bacterial pathogens to form biofilms. Using quantitative culture-based and molecular methods, viable E. coli, Klebsiella spp., Citrobacter spp., and Enterococcus spp. were identified after only 24-hour of deployment. Moreover, these pathogens were continually present at each timepoint (2, 4, 6, 8, 10, 14 and 23 days) as biofilm communities matured, with all pathogens detected at higher concentrations downstream of the WWTP effluent pipe. Long-read whole genome sequencing revealed a suite of plasmids, virulence genes and antimicrobial resistance genes in bacterial pathogens isolated from biofilms formed downstream of the effluent pipe. Furthermore, recognising that pathogens are typically present at proportionally low concentrations within mixed biofilm communities, total biofilm pathogenicity was confirmed using a Galleria mellonella infection model. Full-length 16S rRNA gene sequencing revealed that human pathogens present in microplastic biofilms (the 'plastisphere') dominated the microbial community of infected G. mellonella larvae within 24 hr, suggesting these bacteria remained highly virulent. Overall, this study demonstrated the efficacy of an easy-to-deploy system for the surveillance and rapid detection of pathogenic bacteria being discharged from point-source pollution. We envisage that if used as part of an integrated environmental management approach, this approach could help to reduce the public and environmental health risks of human pathogens and antimicrobial resistance genes, by monitoring viable human pathogens entering surface waters.
Collapse
Affiliation(s)
- Luke Woodford
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Lauren F Messer
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Rosie Fellows
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
4
|
Sharma P, Pal N, Kumawat M, Singh S, Das D, Tilwari A, Prakash A, Tiwari RR, Kumar M. Investigating the antibiotic resistance genes and mobile genetic elements in water systems impacted with anthropogenic pollutants. ENVIRONMENTAL RESEARCH 2025; 269:120814. [PMID: 39824274 DOI: 10.1016/j.envres.2025.120814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
A wide range of pollutants, including heavy metals, endocrine-disrupting chemicals (EDCs), residual pesticides, and pharmaceuticals, are present in various water systems, many of which strongly drive the proliferation and dissemination of antimicrobial resistance genes (ARGs), heightening the antimicrobial resistance (AMR) crisis and creating a critical challenge for environmental and health management worldwide. This study addresses the impact of anthropogenic pollutants on AMR through an extensive analysis of ARGs and mobile genetic elements (MGEs) in urban wastewater, source water, and drinking water supplies in India. Results indicated that blaTEM and blaCTXM-32 were the dominant ARGs across all water systems, underscoring the prevalence and dominance of resistance against β-lactam antibiotics. Moreover, transposase genes such as tnpA-02, tnp-04, and tnpA-05 were detected across all water systems, indicating potential mechanisms for genetic transfer. The ubiquitous presence of intI-1 and clin-intI-1 genes underscores the widespread dissemination of MGEs, posing challenges for water quality management. Besides, human pathogenic bacteria such as Clostridium, Acinetobacter, and Legionella were also detected, highlighting potential health risks associated with contaminated water. The identified pathogenic bacterial genera belong to the phyla Pseudomonadota and Firmicutes. Leveraging linear regression to analyze correlations between EDCs and ARG-MGEs provides deeper insights into their interconnected dynamics. DMP showed a significant influence on tnpA-02 (p = 0.005), tnpA-07 (p = 0.015), sul-1 (p = 0.008), intI-1 (p = 0.03), and clin-intI1 (p = 0.012), while DiNOP demonstrated a very high impact on tnpA-05 (p = 0). Redundancy analysis revealed significant correlations between resistance genes and EDCs. Additionally, environmental parameters such as pH were highly correlated with the majority of MGEs and blaCTXM-32. Furthermore, we found that F-, NO-3, and SO4-2 were significantly correlated with sul-1, with F- exhibiting the highest impact, emphasizing the intricate interplay of pollutants in driving AMR. Understanding these interconnected factors is crucial for developing effective strategies and sustainable solutions to combat antibiotic resistance in environmental settings.
Collapse
Affiliation(s)
- Poonam Sharma
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India; Department of Microbiology, Barkatullah Vishwavidyalaya, Hoshangabad Road, Bhopal, 462026, Madhya Pradesh, India
| | - Namrata Pal
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Manoj Kumawat
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India; Indian Institute of Science Education and Research Bhopal (IISERB), Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Samradhi Singh
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Deepanker Das
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Anita Tilwari
- Department of Microbiology, Barkatullah Vishwavidyalaya, Hoshangabad Road, Bhopal, 462026, Madhya Pradesh, India
| | - Anil Prakash
- Department of Microbiology, Barkatullah Vishwavidyalaya, Hoshangabad Road, Bhopal, 462026, Madhya Pradesh, India
| | - Rajnarayan R Tiwari
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India
| | - Manoj Kumar
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030, Madhya Pradesh, India.
| |
Collapse
|
5
|
Talat A, Bashir Y, Khalil N, Brown CL, Gupta D, Khan AU. Antimicrobial resistance transmission in the environmental settings through traditional and UV-enabled advanced wastewater treatment plants: a metagenomic insight. ENVIRONMENTAL MICROBIOME 2025; 20:27. [PMID: 40050994 PMCID: PMC11884044 DOI: 10.1186/s40793-024-00658-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/16/2024] [Indexed: 03/09/2025]
Abstract
BACKGROUND Municipal wastewater treatment plants (WWTPs) are pivotal reservoirs for antibiotic-resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). Selective pressures from antibiotic residues, co-selection by heavy metals, and conducive environments sustain ARGs, fostering the emergence of ARB. While advancements in WWTP technology have enhanced the removal of inorganic and organic pollutants, assessing ARG and ARB content in treated water remains a gap. This metagenomic study meticulously examines the filtration efficiency of two distinct WWTPs-conventional (WWTPC) and advanced (WWTPA), operating on the same influent characteristics and located at Aligarh, India. RESULTS The dominance of Proteobacteria or Pseudomonadota, characterized the samples from both WWTPs and carried most ARGs. Acinetobacter johnsonii, a prevailing species, exhibited a diminishing trend with wastewater treatment, yet its persistence and association with antibiotic resistance underscore its adaptive resilience. The total ARG count was reduced in effluents, from 58 ARGs, representing 14 distinct classes of antibiotics in the influent to 46 and 21 in the effluents of WWTPC and WWTPA respectively. However, an overall surge in abundance, particularly influenced by genes such as qacL, blaOXA-900, and rsmA was observed. Numerous clinically significant ARGs, including those against aminoglycosides (AAC(6')-Ib9, APH(3'')-Ib, APH(6)-Id), macrolides (EreD, mphE, mphF, mphG, mphN, msrE), lincosamide (lnuG), sulfonamides (sul1, sul2), and beta-lactamases (blaNDM-1), persisted across both conventional and advanced treatment processes. The prevalence of mobile genetic elements and virulence factors in the effluents possess a high risk for ARG dissemination. CONCLUSIONS Advanced technologies are essential for effective ARG and ARB removal. A multidisciplinary approach focused on investigating the intricate association between ARGs, microbiome dynamics, MGEs, and VFs is required to identify robust indicators for filtration efficacy, contributing to optimized WWTP operations and combating ARG proliferation across sectors.
Collapse
Affiliation(s)
- Absar Talat
- Antimicrobial Resistance Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Yasir Bashir
- Antimicrobial Resistance Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Nadeem Khalil
- Environmental Engineering Section, Department of Civil Engineering, Aligarh Muslim University, Aligarh, 202001, India
| | - Connor L Brown
- Department of Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Asad Ullah Khan
- Antimicrobial Resistance Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
6
|
Magnano San Lio R, Maugeri A, Barchitta M, Favara G, La Rosa MC, La Mastra C, Agodi A. Monitoring Antibiotic Resistance in Wastewater: Findings from Three Treatment Plants in Sicily, Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:351. [PMID: 40238414 PMCID: PMC11942589 DOI: 10.3390/ijerph22030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/17/2025] [Accepted: 02/25/2025] [Indexed: 04/18/2025]
Abstract
Antimicrobial resistance (AMR) poses a global public health threat. Wastewater analysis provides valuable insights into antimicrobial resistance genes (ARGs), identifying sources and trends and evaluating AMR control measures. Between February 2022 and March 2023, pre-treatment urban wastewater samples were collected weekly from treatment plants in Pantano D'Arci, Siracusa, and Giarre (Sicily, Italy). Monthly composite DNA extracts were prepared by combining weekly subsamples from each site, yielding 42 composite samples-14 from each treatment plant. Real-time PCR analysis targeted specific ARGs, including blaSHV, erm(A), erm(B), blaOXA, blaNDM, blaVIM, blaTEM, and blaCTX-M. The preliminary findings revealed that blaERM-B, blaOXA, blaTEM, and blaCTX-M were present in all samples, with erm(B) (median value: 8.51; range: 1.67-30.93), blaSHV (0.78; 0.00-6.36), and blaTEM (0.72; 0.34-4.30) showing the highest relative abundance. These results underscore the importance of integrating ARG data with broader research to understand the persistence and proliferation mechanisms of ARGs in wastewater environments. Future studies should employ metagenomic analyses to profile resistomes in urban, hospital, agricultural, and farm wastewater. Comparing these profiles will help identify contamination pathways and inform the development of targeted ARG surveillance programs. Monitoring shifts in ARG abundance could signal cross-sectoral contamination, enabling more effective AMR control strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (R.M.S.L.); (A.M.); (M.B.); (G.F.); (M.C.L.R.); (C.L.M.)
| |
Collapse
|
7
|
Gray HA, Biggs PJ, Midwinter AC, Rogers LE, Fayaz A, Akhter RN, Burgess SA. Genomic epidemiology of extended-spectrum beta-lactamase-producing Escherichia coli from humans and a river in Aotearoa New Zealand. Microb Genom 2025; 11:001341. [PMID: 39791259 PMCID: PMC11718517 DOI: 10.1099/mgen.0.001341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025] Open
Abstract
In Aotearoa New Zealand, urinary tract infections in humans are commonly caused by extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. This group of antimicrobial-resistant bacteria are often multidrug resistant. However, there is limited information on ESBL-producing E. coli found in the environment and their link with human clinical isolates. In this study, we examined the genetic relationship between environmental and human clinical ESBL-producing E. coli and isolates collected in parallel within the same area over 14 months. Environmental samples were collected from treated effluent, stormwater and multiple locations along an Aotearoa New Zealand river. Treated effluent, stormwater and river water sourced downstream of the treated effluent outlet were the main samples that were positive for ESBL-producing E. coli (7/14 samples, 50.0%; 3/6 samples, 50%; and 15/28 samples, 54%, respectively). Whole-genome sequence comparison was carried out on 307 human clinical and 45 environmental ESBL-producing E. coli isolates. Sequence type 131 was dominant for both clinical (147/307, 47.9%) and environmental isolates (11/45, 24.4%). Only one ESBL gene was detected in each isolate. Among the clinical isolates, the most prevalent ESBL genes were bla CTX-M-27 (134/307, 43.6%) and bla CTX-M-15 (134/307, 43.6%). Among the environmental isolates, bla CTX-M-15 (28/45, 62.2%) was the most prevalent gene. A core SNP analysis of these isolates suggested that some strains were shared between humans and the local river. These results highlight the importance of understanding different transmission pathways for the spread of ESBL-producing E. coli.
Collapse
Affiliation(s)
- Holly A. Gray
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Patrick J. Biggs
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Anne C. Midwinter
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Lynn E. Rogers
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Ahmed Fayaz
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Rukhshana N. Akhter
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Sara A. Burgess
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
8
|
Tallon AK, Smith RK, Rush S, Naveda-Rodriguez A, Brooks JP. The role of New World vultures as carriers of environmental antimicrobial resistance. BMC Microbiol 2024; 24:487. [PMID: 39567868 PMCID: PMC11577912 DOI: 10.1186/s12866-024-03621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Although antibiotics have significantly improved human and animal health, their intensive use leads to the accumulation of antimicrobial resistance (AMR) in the environment. Moreover, certain waste management practices create the ideal conditions for AMR development while providing predictable resources for wildlife. Here, we investigated the role of landfills in the potentiation of New World vultures to disseminate environmental AMR. We collected 107 samples (soil, water, and feces) between 2023 and 2024, in different bird use sites (roosts, landfills and boneyards). RESULTS We isolated enterococci (EN), Escherichia coli (EC), and Salmonella spp. (SM), performed antibiotic susceptibility tests, and quantified the presence of antibiotic resistance genes (ARGs) within all samples. We identified EN, EC, and SM, in 50, 37, and 26 samples, from the three vulture use areas, respectively. AMR was mainly to aminoglycoside, cephalosporin, and tetracycline, and the prevalence of multidrug resistance (MDR) was 5.3% (EC), 78.2% (EN), and 17.6% (SM). Variations in bacterial abundance and AMR/MDR profiles were found based on the season, use site, and sample types, which was corroborated by ARG analyses. CONCLUSIONS Our study suggests that landfills constitute a source of zoonotic pathogens and AMR for wildlife, due to readily available refuse input. Using non-invasive molecular methods, we highlight an often-ignored ecosystem within the One Health paradigm.
Collapse
Affiliation(s)
- Anaïs K Tallon
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HiFMB), Ammerländer, Heerstrasse 231, 26121, Oldenburg, Germany.
| | - Renotta K Smith
- USDA-ARS, Genetics and Sustainable Agriculture Unit, 150 Twelve Lane, Mississippi State, MS, 39762-5367, USA
| | - Scott Rush
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, P.O. Box 9690, Mississippi State, MS, 39762, USA
| | - Adrian Naveda-Rodriguez
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, P.O. Box 9690, Mississippi State, MS, 39762, USA
| | - John P Brooks
- USDA-ARS, Genetics and Sustainable Agriculture Unit, 150 Twelve Lane, Mississippi State, MS, 39762-5367, USA.
| |
Collapse
|
9
|
Kamatham S, Seeralan M, Sekar U, Kuppusamy S. Antimicrobial resistance profiling of bacteria isolated from wastewater and samples of pharmaceutical industries in South India. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 125:105670. [PMID: 39303927 DOI: 10.1016/j.meegid.2024.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
The study was aimed to determine the phenotypic and genotypic antimicrobial resistance in the isolated bacteria from the influent (25), effluent (15), surface and ground water samples (15) surrounding the pharmaceutical industries located in south India. From 55 samples, 48 isolates of 10 different bacteria were obtained. The identified bacterial isolates were viz. Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter aerogenes, Corynebacterium sp., Acinetobacter sp., Aeromonas punctata, Ralstonia picketti, Staphylococcus aureus, Stenotrophomonas maltophillia, and Citrobacter freundii. The phenotypic profile of resistance through antibiotic susceptibility test was carried out against sixteen different antibiotics. Standard PCR technique was used for the detection of 12 resistance genes encoding carbapenems, quinoline, aminoglycoside, β-lactam belonging blaOXA-58,blaOXA-22,qnrA, qnrB, aac(6)-Ib-cr, aac (3)-XI, mec A, qepA, aadB, blaVIM, blaOXA-48 and blaNDM. Pseudomonas aeruginosa (1: TN/I/2020) showed presence of 3 resistance genes. qnrB (489 bp) gene was present in maximum of 7 isolates while blaVIM (196 bp) gene was present in 6 isolates. The resistance genes blaNDM (621 bp) was present in three different isolates; aac (X):6)-lb-cr (482 bp), qepA (495 bp), aadB (500 bp), blaOXA-58 (843 bp) resistant genes were present in two different isolates each among the bacterial isolates obtained in this study. In phenotypic resistance profiling by AST method, out of 16 antibiotics tested, 14 showed resistance. Similarly, in genotypic resistance profiling, among 12 resistance genes tested, a maximum of three resistance genes were noticed in Pseudomonas aeruginosa. There were positive and negative correlations observed between phenotypic and genotypic resistance among different antibiotics and their resistance genes indicating the variations in the resistance gene expression.
Collapse
Affiliation(s)
- Sravani Kamatham
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, (DU), Porur, Chennai 600116, India
| | - Manoharan Seeralan
- Vaccine Research Centre - Bacterial Vaccine, Centre for Animal Health Studies, TANUVAS, Madhavaram, Chennai 600051, India
| | - Uma Sekar
- Department of Microbiology, SRMC & RI, Sri Ramachandra Institute of Higher Education and Research, (DU), Porur, Chennai 600116, India
| | - Sujatha Kuppusamy
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, (DU), Porur, Chennai 600116, India; Department of Pharmaceutical Chemistry, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, (DU), Porur, Chennai 600116, India.
| |
Collapse
|
10
|
de Farias BO, Saggioro EM, Montenegro KS, Magaldi M, Santos HSO, Gonçalves-Brito AS, Pimenta RL, Ferreira RG, Spisso BF, Pereira MU, Bianco K, Clementino MM. Metagenomic insights into plasmid-mediated antimicrobial resistance in poultry slaughterhouse wastewater: antibiotics occurrence and genetic markers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60880-60894. [PMID: 39395082 DOI: 10.1007/s11356-024-35287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Slaughterhouse wastewater represents important convergence and concentration points for antimicrobial residues, bacteria, and antibiotic resistance genes (ARG), which can promote antimicrobial resistance propagation in different environmental compartments. This study reports the assessment of the metaplasmidome-associated resistome in poultry slaughterhouse wastewater treated by biological processes, employing metagenomic sequencing. Antimicrobial residues from a wastewater treatment plant (WWTP) that treats poultry slaughterhouse influents and effluents were investigated through high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Residues from the macrolide, sulfonamide, and fluoroquinolone classes were detected, the latter two persisting after the wastewater treatment. The genetic markers 16S rRNA rrs (bacterial community) and uidA (Escherichia coli) were investigated by RT-qPCR and the sul1 and int1 genes by qPCR. After treatment, the 16S rRNA rrs, uidA, sul1, and int1 markers exhibited reductions of 0.67, 1.07, 1.28, and 0.79 genes copies, respectively, with no statistical significance (p > 0.05). The plasmidome-focused metagenomics sequences (MiSeq platform (Illumina®)) revealed more than 100 ARG in the WWTP influent, which can potentially confer resistance to 14 pharmacological classes relevant in the human and veterinary clinical contexts, in which the qnr gene (resistance to fluoroquinolones) was the most prevalent. Only 7.8% of ARG were reduced after wastewater treatment, and the remaining 92.2% were associated with an increase in the prevalence of ARG linked to multidrug efflux pumps, substrate-specific for certain classes of antibiotics, or broad resistance to multiple medications. These data demonstrate that wastewater from poultry slaughterhouses plays a crucial role as an ARG reservoir and in the spread of AMR into the environment.
Collapse
Affiliation(s)
- Beatriz Oliveira de Farias
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Enrico Mendes Saggioro
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
- Laboratório de Avaliação E Promoção da Saúde Ambiental, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
| | - Kaylanne S Montenegro
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mariana Magaldi
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Hugo Sérgio Oliveira Santos
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Andressa Silva Gonçalves-Brito
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Ramon Loureiro Pimenta
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Km 07, Zona Rural, BR-465, Seropédica, RJ, Brazil
| | - Rosana Gomes Ferreira
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Bernardete Ferraz Spisso
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mararlene Ulberg Pereira
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Kayo Bianco
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Maysa Mandetta Clementino
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
11
|
Attrah M, Schärer MR, Esposito M, Gionchetta G, Bürgmann H, Lens PNL, Fenner K, van de Vossenberg J, Robinson SL. Disentangling abiotic and biotic effects of treated wastewater on stream biofilm resistomes enables the discovery of a new planctomycete beta-lactamase. MICROBIOME 2024; 12:164. [PMID: 39242535 PMCID: PMC11380404 DOI: 10.1186/s40168-024-01879-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/23/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Environmental reservoirs of antibiotic resistance pose a threat to human and animal health. Aquatic biofilms impacted by wastewater effluent (WW) are known environmental reservoirs for antibiotic resistance; however, the relative importance of biotic factors and abiotic factors from WW on the abundance of antibiotic resistance genes (ARGs) within aquatic biofilms remains unclear. Additionally, experimental evidence is limited within complex aquatic microbial communities as to whether genes bearing low sequence similarity to validated reference ARGs are functional as ARGs. RESULTS To disentangle the effects of abiotic and biotic factors on ARG abundances, natural biofilms were previously grown in flume systems with different proportions of stream water and either ultrafiltered or non-ultrafiltered WW. In this study, we conducted deep shotgun metagenomic sequencing of 75 biofilm, stream, and WW samples from these flume systems and compared the taxonomic and functional microbiome and resistome composition. Statistical analysis revealed an alignment of the resistome and microbiome composition and a significant association with experimental treatment. Several ARG classes exhibited an increase in normalized metagenomic abundances in biofilms grown with increasing percentages of non-ultrafiltered WW. In contrast, sulfonamide and extended-spectrum beta-lactamase ARGs showed greater abundances in biofilms grown in ultrafiltered WW compared to non-ultrafiltered WW. Overall, our results pointed toward the dominance of biotic factors over abiotic factors in determining ARG abundances in WW-impacted stream biofilms and suggested gene family-specific mechanisms for ARGs that exhibited divergent abundance patterns. To investigate one of these specific ARG families experimentally, we biochemically characterized a new beta-lactamase from the Planctomycetota (Phycisphaeraceae). This beta-lactamase displayed activity in the cleavage of cephalosporin analog despite sharing a low sequence identity with known ARGs. CONCLUSIONS This discovery of a functional planctomycete beta-lactamase ARG is noteworthy, not only because it was the first beta-lactamase to be biochemically characterized from this phylum, but also because it was not detected by standard homology-based ARG tools. In summary, this study conducted a metagenomic analysis of the relative importance of biotic and abiotic factors in the context of WW discharge and their impact on both known and new ARGs in aquatic biofilms. Video Abstract.
Collapse
Affiliation(s)
- Mustafa Attrah
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
- Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, The Netherlands
| | - Milo R Schärer
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
| | - Mauro Esposito
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
| | - Giulia Gionchetta
- Department of Surface Waters - Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland
| | - Helmut Bürgmann
- Department of Surface Waters - Research and Management, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland
| | - Piet N L Lens
- Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, The Netherlands
- National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
- Department of Chemistry, University of Zürich, 8057, Zurich, Switzerland
| | - Jack van de Vossenberg
- Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, The Netherlands
| | - Serina L Robinson
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland.
| |
Collapse
|
12
|
Mills M, Mollenkopf D, Wittum T, Sullivan MP, Lee J. One Health Threat of Treated Wastewater Discharge in Urban Ohio Rivers: Implications for Surface Water and Fish Gut Microbiome and Resistome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39014939 DOI: 10.1021/acs.est.3c09070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Wastewater treatment plants (WWTPs) are thought to be a major disseminating source of antibiotic resistance (AR) to the environment, establishing a crucial connection between human and environmental resistome. The objectives of this study were to determine how wastewater effluents impact microbiome and resistome of freshwater and fish, and identify potential AR-carrying clinically relevant pathogens in these matrices. We analyzed wastewater influent and effluent from four WWTPs in three metropolitan areas of Ohio, USA via shotgun metagenomic sequencing. We also sequenced river water and fish guts from three reaches (upstream, at the WWTP outfall, and downstream). Notably, we observed a decline in microbiome diversity and AR gene abundance from wastewater to the receiving river. We also found significant differences by reach and trophic level (diet) in beta-diversity of the fish gut microbiomes. SourceTracker revealed that 0.443 and 0.248 more of the of the fish gut microbiome was sourced from wastewater effluent in fish from the outfall and downstream locations, respectively, compared to upstream fish. Additionally, AR bacteria of public health concern were annotated in effluent and river water samples, indicating potential concern for human exposure. In summary, our findings show the continued role of wastewater as a significant AR reservoir and underscores the considerable impact of wastewater discharge on aquatic wildlife, which highlights the One Health nature of this issue.
Collapse
Affiliation(s)
- Molly Mills
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dixie Mollenkopf
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas Wittum
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mažeika Patricio Sullivan
- Baruch Institute of Coastal Ecology & Forest Science, Clemson University, Georgetown, South Carolina 29442, United States
| | - Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio 43210, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Food Science & Technology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
13
|
Singh A, Pratap SG, Raj A. Occurrence and dissemination of antibiotics and antibiotic resistance in aquatic environment and its ecological implications: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47505-47529. [PMID: 39028459 DOI: 10.1007/s11356-024-34355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
The occurrence of antibiotics and antibiotic-resistant bacteria (ARBs), genes (ARGs), and mobile genetic elements (MGEs) in aquatic systems is growing global public health concern. These emerging micropollutants, stemming from improper wastewater treatment and disposal, highlight the complex and evolving nature of environmental pollution. Current literature reveals potential biases, such as a geographical focus on specific regions, leading to an insufficient understanding of the global distribution and dynamics of antibiotic resistance in aquatic systems. There is methodological inconsistency across studies, making it challenging to compare findings. Potential biases include sample collection inconsistencies, detection sensitivity variances, and data interpretation variability. Gaps in understanding include the need for comprehensive, standardized long-term monitoring programs, elucidating the environmental fate and transformation of antibiotics and resistance genes. This review summarizes current knowledge on the occurrence and dissemination of emerging micropollutants, their ecological impacts, and the global health implications of antimicrobial resistance. It highlights the need for interdisciplinary collaborations among researchers, policymakers, and stakeholders to address the challenges posed by antibiotic resistance in aquatic resistance in aquatic systems effectively. This review highlights widespread antibiotic and antibiotic resistance in aquatic environment, driven by human and agricultural activities. It underscores the ecological consequences, including disrupted microbial communities and altered ecosystem functions. The findings call for urgent measures to mitigate antibiotics pollution and manage antibiotic resistance spread in water bodies.
Collapse
Affiliation(s)
- Anjali Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
- School of Environmental Science, Babu Banarsi Das University, Lucknow, 227015, Uttar Pradesh, India
| | - Shalini G Pratap
- School of Environmental Science, Babu Banarsi Das University, Lucknow, 227015, Uttar Pradesh, India
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.
| |
Collapse
|
14
|
Ragab S, Gouda SM, Abdelmoteleb M, El-Shibiny A. The role of identified and characterized bacteriophage ZCEC13 in controlling pathogenic and multidrug-resistant Escherichia coli in wastewater: in vitro study. ENVIRONMENTAL TECHNOLOGY 2024; 45:3544-3558. [PMID: 37255221 DOI: 10.1080/09593330.2023.2220886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/20/2023] [Indexed: 06/01/2023]
Abstract
The spread and development of Multi-Drug Resistant (MDR) bacteria in wastewater became beyond control and a global public health concern. The conventional disinfectants used in wastewater treatment methods have been becoming increasingly ineffective against a range of pathogenic and MDR bacteria. Bacteriophages are considered a novel approach to microbial control. Therefore, this study aims to explore the possibility of using phages against pathogenic and MDR Escherichia coli strains isolated from wastewater treatment plants. The wastewater samples were collected from two different treatment plants for E. coli isolation. The antibiotic sensitivity profile and occurrence of virulence and resistant genes were tested in 28 E. coli isolates. Phage ZCEC13 was selected based on its promising activity and host range to undergo identification and characterization. ZCEC13 was evaluated by transmission electron microscopy, genomic sequencing, in vitro lytic activity and tested for its stability under different conditions such as pH, Ultraviolet light exposure, and temperature. The results reported that ZCEC13 belongs to the Caudoviricetes class, with a high antibacterial dynamic. Phage ZCEC13 displayed high stability at different pH values ranging from 2 to 12, good tolerance to temperatures from -4 to 65°C, and high stability at UV exposure for 120 min. Respectively, the findings showed stability of the phage under several conditions and high efficiency in killing MDR bacteria isolated from the treatment plants. Further studies are encouraged to analyse the efficacy of phages as a microbial control agent in wastewater treatment plants.
Collapse
Affiliation(s)
- Samar Ragab
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Shrouk Mohamed Gouda
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | | | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt
| |
Collapse
|
15
|
Park JH, Bae KS, Kang J, Yoon JK, Lee SH. Comprehensive Assessment of Multidrug-Resistant and Extraintestinal Pathogenic Escherichia coli in Wastewater Treatment Plant Effluents. Microorganisms 2024; 12:1119. [PMID: 38930502 PMCID: PMC11205404 DOI: 10.3390/microorganisms12061119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Multidrug-resistant (MDR) Escherichia coli poses a significant threat to public health, contributing to elevated rates of morbidity, mortality, and economic burden. This study focused on investigating the antibiotic resistance profiles, resistance and virulence gene distributions, biofilm formation capabilities, and sequence types of E. coli strains resistant to six or more antibiotic classes. Among 918 strains isolated from 33 wastewater treatment plants (WWTPs), 53.6% (492/918) demonstrated resistance, 32.5% (298/918) were MDR, and over 8% (74/918) were resistant to six or more antibiotic classes, exhibiting complete resistance to ampicillin and over 90% to sulfisoxazole, nalidixic acid, and tetracycline. Key resistance genes identified included sul2, blaTEM, tetA, strA, strB, and fimH as the predominant virulence genes linked to cell adhesion but limited biofilm formation; 69% showed no biofilm formation, and approximately 3% were strong producers. Antibiotic residue analysis detected ciprofloxacin, sulfamethoxazole, and trimethoprim in all 33 WWTPs. Multilocus sequence typing analysis identified 29 genotypes, predominantly ST131, ST1193, ST38, and ST69, as high-risk clones of extraintestinal pathogenic E. coli. This study provided a comprehensive analysis of antibiotic resistance in MDR E. coli isolated from WWTPs, emphasizing the need for ongoing surveillance and research to effectively manage antibiotic resistance.
Collapse
Affiliation(s)
- Ji-Hyun Park
- Han River Environment Research Center, National Institute of Environment Research, Yangpyeong-gun, Incheon 12585, Gyeonggi-do, Republic of Korea
| | - Kyung-Seon Bae
- Division of Water Supply and Sewerage Research, National Institute of Environment Research, Yangpyeong-gun, Incheon 22689, Gyeonggi-do, Republic of Korea; (K.-S.B.); (J.K.); (J.-K.Y.); (S.-H.L.)
| | - Jihyun Kang
- Division of Water Supply and Sewerage Research, National Institute of Environment Research, Yangpyeong-gun, Incheon 22689, Gyeonggi-do, Republic of Korea; (K.-S.B.); (J.K.); (J.-K.Y.); (S.-H.L.)
| | - Jeong-Ki Yoon
- Division of Water Supply and Sewerage Research, National Institute of Environment Research, Yangpyeong-gun, Incheon 22689, Gyeonggi-do, Republic of Korea; (K.-S.B.); (J.K.); (J.-K.Y.); (S.-H.L.)
| | - Soo-Hyung Lee
- Division of Water Supply and Sewerage Research, National Institute of Environment Research, Yangpyeong-gun, Incheon 22689, Gyeonggi-do, Republic of Korea; (K.-S.B.); (J.K.); (J.-K.Y.); (S.-H.L.)
| |
Collapse
|
16
|
Lou EG, Fu Y, Wang Q, Treangen TJ, Stadler LB. Sensitivity and consistency of long- and short-read metagenomics and epicPCR for the detection of antibiotic resistance genes and their bacterial hosts in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133939. [PMID: 38490149 DOI: 10.1016/j.jhazmat.2024.133939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024]
Abstract
Wastewater surveillance is a powerful tool to assess the risks associated with antibiotic resistance in communities. One challenge is selecting which analytical tool to deploy to measure risk indicators, such as antibiotic resistance genes (ARGs) and their respective bacterial hosts. Although metagenomics is frequently used for analyzing ARGs, few studies have compared the performance of long-read and short-read metagenomics in identifying which bacteria harbor ARGs in wastewater. Furthermore, for ARG host detection, untargeted metagenomics has not been compared to targeted methods such as epicPCR. Here, we 1) evaluated long-read and short-read metagenomics as well as epicPCR for detecting ARG hosts in wastewater, and 2) investigated the host range of ARGs across the wastewater treatment plant (WWTP) to evaluate host proliferation. Results highlighted long-read revealed a wider range of ARG hosts compared to short-read metagenomics. Nonetheless, the ARG host range detected by long-read metagenomics only represented a subset of the hosts detected by epicPCR. The ARG-host linkages across the influent and effluent of the WWTP were characterized. Results showed the ARG-host phylum linkages were relatively consistent across the WWTP, whereas new ARG-host species linkages appeared in the WWTP effluent. The ARG-host linkages of several clinically relevant species found in the effluent were identified.
Collapse
Affiliation(s)
- Esther G Lou
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Yilei Fu
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Qi Wang
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Todd J Treangen
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA.
| |
Collapse
|
17
|
Stankiewicz K, Boroń P, Prajsnar J, Żelazny M, Heliasz M, Hunter W, Lenart-Boroń A. Second life of water and wastewater in the context of circular economy - Do the membrane bioreactor technology and storage reservoirs make the recycled water safe for further use? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170995. [PMID: 38378066 DOI: 10.1016/j.scitotenv.2024.170995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
In recent years water demand drastically increased which is particularly evident in tourism-burdened mountain regions. In these areas, climate neutral circular economy strategies to minimize human impact on the environment can be successfully applied. Among these strategies, treated wastewater reuse and retaining water in storage reservoirs deserve particular attention. This study aimed to determine if recycled water produced with two circular economy systems, namely membrane bioreactor treatment plant (MBR) with UV-light effluent disinfection and a storage reservoir, is safe enough for further use in green areas irrigation in summer and artificial snow production in winter. The assessment was based on the presence and concentration of antimicrobial agents, antibiotic resistant bacteria, antibiotic resistance genes, bacterial community composition and diversity. The treated water and wastewater was compared with natural water in their vicinity. Both systems fulfill the criteria set by the European Union in terms of reclaimed water suitable for reuse. Although the MBR/UV light wastewater treatment substantially reduced the numbers of E. coli and E. faecalis (from e.g. 32,000 CFU/100 ml to 20 CFU/100 ml and 15,000 CFU/100 ml to nearly 0 CFU/ml), bacteria resistant to ampicillin, aztreonam, cefepime, ceftazidime, ertapenem and tigecycline, as well as ESBL-positive and multidrug resistant E. coli were highly prevalent in MBR-treated wastewater (88.9 %, 55.6 %, 33.3 %, 22.2 % and 11.1 % and 44.4 and 55.6 %, respectively). Applying additional tertiary treatment technology is recommended. Retaining water in storage reservoirs nearly eliminated bacterial contaminants (e.g. E. coli dropped from 350 CFU/100 ml to 10 CFU/100 ml), antibiotic resistant bacteria, resistance genes (none detected in the storage reservoir) and antibiotics (only enrofloxacin detected once in the concentration of 3.20 ng/l). Findings of this study point to the limitations of solely culture-based assessment of reclaimed water and wastewater while they may prove useful in risk management and prevention in wastewater reuse.
Collapse
Affiliation(s)
- Klaudia Stankiewicz
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland
| | - Piotr Boroń
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Kraków, 29 Listopada Ave. 46, 31-425 Kraków, Poland
| | - Justyna Prajsnar
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Str. 8, 30-239 Kraków, Poland
| | - Mirosław Żelazny
- Department of Hydrology, Institute of Geography and Spatial Management, Jagiellonian University in Kraków, Gronostajowa Str. 7, 30-387 Kraków, Poland
| | - Miłosz Heliasz
- Scientific Circle of Biotechnologists, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listpada Ave. 54, 31-425 Kraków, Poland
| | - Walter Hunter
- Scientific Circle of Biotechnologists, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listpada Ave. 54, 31-425 Kraków, Poland
| | - Anna Lenart-Boroń
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland.
| |
Collapse
|
18
|
Hazra M, Watts JEM, Williams JB, Joshi H. An evaluation of conventional and nature-based technologies for controlling antibiotic-resistant bacteria and antibiotic-resistant genes in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170433. [PMID: 38286289 DOI: 10.1016/j.scitotenv.2024.170433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
Antibiotic resistance is a globally recognized health concern which leads to longer hospital stays, increased morbidity, increased mortality, and higher medical costs. Understanding how antibiotic resistance persists and exchanges in environmental systems like soil, water, and wastewater are critically important for understanding the emergence of pathogens with new resistance profiles and the subsequent exposure of people who indirectly/directly come in contact with these pathogens. There are concerns about the widespread application of prophylactic antibiotics in the clinical and agriculture sectors, as well as chemicals/detergents used in food and manufacturing industries, especially the quaternary ammonium compounds which have been found responsible for the generation of resistant genes in water and soil. The rates of horizontal gene transfer increase where there is a lack of proper water/wastewater infrastructure, high antibiotic manufacturing industries, or endpoint users - such as hospitals and intensive agriculture. Conventional wastewater treatment technologies are often inefficient in the reduction of ARB/ARGs and provide the perfect combination of conditions for the development of antibiotic resistance. The wastewater discharged from municipal facilities may therefore be enriched with bacterial communities/pathogens and provide a suitable environment (due to the presence of nutrients and other pollutants) to enhance the transfer of antibiotic resistance. However, facilities with tertiary treatment (either traditional/emerging technologies) provide higher rates of reduction. This review provides a synthesis of the current understanding of wastewater treatment and antibiotic resistance, examining the drivers that may accelerate their possible transmission to a different environment, and highlighting the need for tertiary technologies used in treatment plants for the reduction of resistant bacteria/genes.
Collapse
Affiliation(s)
- Moushumi Hazra
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India; International Water Management Institute, New Delhi, India; Civil and Environmental Engineering, University of Nebraska Lincoln, United States.
| | - Joy E M Watts
- School of Biological Sciences, University of Portsmouth, United Kingdom
| | - John B Williams
- School of Civil Engineering and Surveying, University of Portsmouth, United Kingdom
| | - Himanshu Joshi
- Department of Hydrology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| |
Collapse
|
19
|
Patel V, Patil K, Patel D, Kikani B, Madamwar D, Desai C. Distribution of bacterial community structures and spread of antibiotic resistome at industrially polluted sites of Mini River, Vadodara, Gujarat, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:208. [PMID: 38279971 DOI: 10.1007/s10661-024-12380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
The influence of anthropogenic pollution on the distribution of bacterial diversity, antibiotic-resistant bacteria (ARBs), and antibiotic resistance genes (ARGs) was mapped at various geo-tagged sites of Mini River, Vadodara, Gujarat, India. The high-throughput 16S rRNA gene amplicon sequencing analysis revealed a higher relative abundance of Planctomycetota at the polluted sites, compared to the pristine site. Moreover, the relative abundance of Actinobacteriota increased, whereas Chloroflexi decreased in the water samples of polluted sites than the pristine site. The annotation of functional genes in the metagenome samples of Mini River sites indicated the presence of genes involved in the defence mechanisms against bacitracin, aminoglycosides, cephalosporins, chloramphenicol, streptogramin, streptomycin, methicillin, and colicin. The analysis of antibiotic resistome at the polluted sites of Mini River revealed the abundance of sulfonamide, beta-lactam, and aminoglycoside resistance. The presence of pathogens and ARB was significantly higher in water and sediment samples of polluted sites compared to the pristine site. The highest resistance of bacterial populations in the Mini River was recorded against sulfonamide (≥ 7.943 × 103 CFU/mL) and ampicillin (≥ 8.128 × 103 CFU/mL). The real-time PCR-based quantification of ARGs revealed the highest abundance of sulfonamide resistance genes sul1 and sul2 at the polluted sites of the Mini River. Additionally, the antimicrobial resistance genes aac(6')-Ib-Cr and blaTEM were also found abundantly at polluted sites of the Mini River. The findings provide insights into how anthropogenic pollution drives the ARG and ARB distribution in the riverine ecosystem, which may help with the development of antimicrobial resistance mitigation strategies.
Collapse
Affiliation(s)
- Vandan Patel
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388 421, Anand, Gujarat, India
| | - Kishor Patil
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388 421, Anand, Gujarat, India
| | - Dishant Patel
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388 421, Anand, Gujarat, India
| | - Bhavtosh Kikani
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388 421, Anand, Gujarat, India
| | - Datta Madamwar
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388 421, Anand, Gujarat, India.
| | - Chirayu Desai
- Department of Environmental Biotechnology, Gujarat Biotechnology University (GBU), Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
20
|
Mukhopadhyay S, Singh M, Ghosh MM, Chakrabarti S, Ganguli S. Comparative Genomics and Characterization of Shigella flexneri Isolated from Urban Wastewater. Microbes Environ 2024; 39:ME23105. [PMID: 38839365 PMCID: PMC11220449 DOI: 10.1264/jsme2.me23105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/22/2024] [Indexed: 06/07/2024] Open
Abstract
Shigella species are a group of highly transmissible Gram-negative pathogens. Increasing reports of infection with extensively drug-resistant varieties of this stomach bug has convinced the World Health Organization to prioritize Shigella for novel therapeutic interventions. We herein coupled the whole-genome sequencing of a natural isolate of Shigella flexneri with a pangenome ana-lysis to characterize pathogen genomics within this species, which will provide us with an insight into its existing genomic diversity and highlight the root causes behind the emergence of quick vaccine escape variants. The isolated novel strain of S. flexneri contained ~4,500 protein-coding genes, 57 of which imparted resistance to antibiotics. A comparative pan-genomic ana-lysis revealed genomic variability of ~64%, the shared conservation of core genes in central metabolic processes, and the enrichment of unique/accessory genes in virulence and defense mechanisms that contributed to much of the observed antimicrobial resistance (AMR). A pathway ana-lysis of the core genome mapped 22 genes to 2 antimicrobial resistance pathways, with the bulk coding for multidrug efflux pumps and two component regulatory systems that are considered to work synergistically towards the development of resistance phenotypes. The prospective evolvability of Shigella species as witnessed by the marked difference in genomic content, the strain-specific essentiality of unique/accessory genes, and the inclusion of a potent resistance mechanism within the core genome, strengthens the possibility of novel serotypes emerging in the near future and emphasizes the importance of tracking down genomic diversity in drug/vaccine design and AMR governance.
Collapse
Affiliation(s)
- Sarmishta Mukhopadhyay
- Post Graduate and Research Department of Biotechnology, St. Xavier’s College (Autonomous) Kolkata, West Bengal, India
| | - Meesha Singh
- Post Graduate and Research Department of Microbiology, St. Xavier’s College (Autonomous) Kolkata, West Bengal, India
| | - Mahashweta Mitra Ghosh
- Post Graduate and Research Department of Microbiology, St. Xavier’s College (Autonomous) Kolkata, West Bengal, India
| | - Santanu Chakrabarti
- Department of Zoology, Government General Degree College Singur, Hooghly, West Bengal, India
| | - Sayak Ganguli
- Post Graduate and Research Department of Biotechnology, St. Xavier’s College (Autonomous) Kolkata, West Bengal, India
| |
Collapse
|
21
|
Teixeira AM, Vaz-Moreira I, Calderón-Franco D, Weissbrodt D, Purkrtova S, Gajdos S, Dottorini G, Nielsen PH, Khalifa L, Cytryn E, Bartacek J, Manaia CM. Candidate biomarkers of antibiotic resistance for the monitoring of wastewater and the downstream environment. WATER RESEARCH 2023; 247:120761. [PMID: 37918195 DOI: 10.1016/j.watres.2023.120761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Urban wastewater treatment plants (UWTPs) are essential for reducing the pollutants load and protecting water bodies. However, wastewater catchment areas and UWTPs emit continuously antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), with recognized impacts on the downstream environments. Recently, the European Commission recommended to monitor antibiotic resistance in UWTPs serving more than 100 000 population equivalents. Antibiotic resistance monitoring in environmental samples can be challenging. The expected complexity of these systems can jeopardize the interpretation capacity regarding, for instance, wastewater treatment efficiency, impacts of environmental contamination, or risks due to human exposure. Simplified monitoring frameworks will be essential for the successful implementation of analytical procedures, data analysis, and data sharing. This study aimed to test a set of biomarkers representative of ARG contamination, selected based on their frequent human association and, simultaneously, rare presence in pristine environments. In addition to the 16S rRNA gene, ten potential biomarkers (intI1, sul1, ermB, ermF, aph(3'')-Ib, qacEΔ1, uidA, mefC, tetX, and crAssphage) were monitored in DNA extracts (n = 116) from raw wastewater, activated sludge, treated wastewater, and surface water (upstream and downstream of UWTPs) samples collected in the Czech Republic, Denmark, Israel, the Netherlands, and Portugal. Each biomarker was sensitive enough to measure decreases (on average by up to 2.5 log-units gene copy/mL) from raw wastewater to surface water, with variations in the same order of magnitude as for the 16S rRNA gene. The use of the 10 biomarkers allowed the typing of water samples whose origin or quality could be predicted in a blind test. The results show that, based on appropriate biomarkers, qPCR can be used for a cost-effective and technically accessible approach to monitoring wastewater and the downstream environment.
Collapse
Affiliation(s)
- A Margarida Teixeira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, Porto 4169-005, Portugal
| | - Ivone Vaz-Moreira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, Porto 4169-005, Portugal
| | - David Calderón-Franco
- Department of Biotechnology, Environmental Biotechnology Section, Delft University of Technology, van der Maasweg 9, Delft, HZ 2629, the Netherlands
| | - David Weissbrodt
- Department of Biotechnology, Environmental Biotechnology Section, Delft University of Technology, van der Maasweg 9, Delft, HZ 2629, the Netherlands; Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim 7034, Norway
| | - Sabina Purkrtova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 5 Technická, Prague 166 28, Czech Republic
| | - Stanislav Gajdos
- Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, University of Chemistry and Technology Prague, 5 Technická, Prague 166 28, Czech Republic
| | - Giulia Dottorini
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg 9220, Denmark
| | - Per Halkjær Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg 9220, Denmark
| | - Leron Khalifa
- Institute of Soil, Water and Environmental Sciences, The Volcani Institute, Agricultural Research Organization, P.O Box 15159, Rishon Lezion 7528809, Israel
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, The Volcani Institute, Agricultural Research Organization, P.O Box 15159, Rishon Lezion 7528809, Israel
| | - Jan Bartacek
- Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, University of Chemistry and Technology Prague, 5 Technická, Prague 166 28, Czech Republic
| | - Célia M Manaia
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, Porto 4169-005, Portugal.
| |
Collapse
|
22
|
Rayan RA. Pharmaceutical effluent evokes superbugs in the environment: A call to action. BIOSAFETY AND HEALTH 2023; 5:363-371. [PMID: 40078743 PMCID: PMC11894946 DOI: 10.1016/j.bsheal.2023.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 03/14/2025] Open
Abstract
Antimicrobial resistance (AMR) is a growing global threat, especially in low- and middle-income countries (LMICs), causing prolonged illnesses, heightened antimicrobial use, increased healthcare expenses, and avoidable deaths. If not tackled, AMR could force 24 million people into severe poverty by 2030 and hinder progress on Sustainable Development Goals (SDGs). AMR spreads through interconnected ecosystems, with humans, animals, and the environment serving as reservoirs. Pharmaceutical wastewater, loaded with antibiotics and resistance genes, poses a significant environmental risk, mainly due to inadequate treatment and irresponsible disposal. The pharmaceutical industry is a notable contributor to environmental antibiotic pollution, with varying effluent management practices. Contaminated pharmaceutical wastewater discharge harms water sources and ecosystems. Urgent collaborative efforts are needed across policymakers, regulators, manufacturers, researchers, civil society, and communities, adopting a One Health approach to curb AMR's spread. Developing global standards for pharmaceutical effluent antibiotic residues, effective treatment methods, and improved diagnostics are vital in addressing AMR's environmental impact while safeguarding public health and the environment. National action plans should encompass comprehensive strategies to combat AMR. Preserving antibiotic efficacy and ensuring sustainable production require a united front from all stakeholders.
Collapse
Affiliation(s)
- Rehab A. Rayan
- Department of Epidemiology, High Institute of Public Health, Alexandria University, Alexandria 21526, Egypt
| |
Collapse
|
23
|
Cho S, Hiott LM, Read QD, Damashek J, Westrich J, Edwards M, Seim RF, Glinski DA, Bateman McDonald JM, Ottesen EA, Lipp EK, Henderson WM, Jackson CR, Frye JG. Distribution of Antibiotic Resistance in a Mixed-Use Watershed and the Impact of Wastewater Treatment Plants on Antibiotic Resistance in Surface Water. Antibiotics (Basel) 2023; 12:1586. [PMID: 37998788 PMCID: PMC10668835 DOI: 10.3390/antibiotics12111586] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
The aquatic environment has been recognized as a source of antibiotic resistance (AR) that factors into the One Health approach to combat AR. To provide much needed data on AR in the environment, a comprehensive survey of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and antibiotic residues was conducted in a mixed-use watershed and wastewater treatment plants (WWTPs) within the watershed to evaluate these contaminants in surface water. A culture-based approach was used to determine prevalence and diversity of ARB in surface water. Low levels of AR Salmonella (9.6%) and Escherichia coli (6.5%) were detected, while all Enterococcus were resistant to at least one tested antibiotic. Fewer than 20% of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae (17.3%) and carbapenem-resistant Enterobacteriaceae (CRE) (7.7%) were recovered. Six ARGs were detected using qPCR, primarily the erythromycin-resistance gene, ermB. Of the 26 antibiotics measured, almost all water samples (98.7%) had detectable levels of antibiotics. Analysis of wastewater samples from three WWTPs showed that WWTPs did not completely remove AR contaminants. ARGs and antibiotics were detected in all the WWTP effluent discharges, indicating that WWTPs are the source of AR contaminants in receiving water. However, no significant difference in ARGs and antibiotics between the upstream and downstream water suggests that there are other sources of AR contamination. The widespread occurrence and abundance of medically important antibiotics, bacteria resistant to antibiotics used for human and veterinary purposes, and the genes associated with resistance to these antibiotics, may potentially pose risks to the local populations exposed to these water sources.
Collapse
Affiliation(s)
- Sohyun Cho
- Poultry Microbiological Safety and Processing Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (S.C.); (L.M.H.); (C.R.J.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA;
| | - Lari M. Hiott
- Poultry Microbiological Safety and Processing Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (S.C.); (L.M.H.); (C.R.J.)
| | - Quentin D. Read
- Agricultural Research Service, U.S. Department of Agriculture, Southeast Area, Raleigh, NC 27606, USA;
| | - Julian Damashek
- Department of Biology, Utica University, Utica, NY 13502, USA;
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (J.W.); (E.A.O.)
| | - Jason Westrich
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (J.W.); (E.A.O.)
| | - Martinique Edwards
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA; (M.E.); (E.K.L.)
| | - Roland F. Seim
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA;
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA 30605, USA; (D.A.G.); (W.M.H.)
| | - Donna A. Glinski
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA 30605, USA; (D.A.G.); (W.M.H.)
| | - Jacob M. Bateman McDonald
- Lewis F. Rogers Institute for Environmental and Spatial Analysis, University of North Georgia, Oakwood, GA 30566, USA;
| | - Elizabeth A. Ottesen
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (J.W.); (E.A.O.)
| | - Erin K. Lipp
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA; (M.E.); (E.K.L.)
| | - William Matthew Henderson
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA 30605, USA; (D.A.G.); (W.M.H.)
| | - Charlene R. Jackson
- Poultry Microbiological Safety and Processing Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (S.C.); (L.M.H.); (C.R.J.)
| | - Jonathan G. Frye
- Poultry Microbiological Safety and Processing Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (S.C.); (L.M.H.); (C.R.J.)
| |
Collapse
|
24
|
Sekizuka T, Yamaguchi N, Kanamori H, Kuroda M. Multiplex Hybrid Capture Improves the Deep Detection of Antimicrobial Resistance Genes from Wastewater Treatment Plant Effluents to Assess Environmental Issues. Microb Drug Resist 2023; 29:510-515. [PMID: 37433210 DOI: 10.1089/mdr.2023.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
Metagenomic sequencing (mDNA-seq) is one of the best approaches to address antimicrobial resistance (AMR) issues and characterize AMR genes (ARGs) and their host bacteria (ARB); however, the sensitivity provided is insufficient for the overall detection in wastewater treatment plant (WWTP) effluents because the effluent is well treated. This study investigated the multiplex hybrid capture (xHYB) method (QIAseq × HYB AMR Panel) and its potential to increase AMR assessment sensitivity. The mDNA-Seq analysis suggested that the WWTP effluents had an average of 104 reads per kilobase of gene per million (RPKM) for the detection of all targeted ARGs, whereas xHYB significantly improved detection at 601,576 RPKM, indicating an average 5,805-fold increase in sensitivity. For instance, sul1 was detected at 15 and 114,229 RPKM using mDNA-seq and xHYB, respectively. The blaCTX-M, blaKPC, and mcr gene variants were not detected by mDNA-Seq but were detected by xHYB at 67, 20, and 1,010 RPKM, respectively. This study demonstrates that the multiplex xHYB method could be a suitable evaluation standard with high sensitivity and specificity for deep-dive detection, highlighting a broader illustration of ongoing dissemination in the entire community.
Collapse
Affiliation(s)
- Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjyuku, Tokyo, Japan
| | - Nobuyasu Yamaguchi
- Department of Environmental Health, Osaka Institute of Public Health, Osaka, Japan
| | - Hajime Kanamori
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjyuku, Tokyo, Japan
| |
Collapse
|
25
|
Morina JC, Franklin RB. Drivers of Antibiotic Resistance Gene Abundance in an Urban River. Antibiotics (Basel) 2023; 12:1270. [PMID: 37627690 PMCID: PMC10451346 DOI: 10.3390/antibiotics12081270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, we sought to profile the abundances and drivers of antibiotic resistance genes in an urban river impacted by combined sewage overflow (CSO) events. Water samples were collected weekly during the summer for two years; then, quantitative PCR was applied to determine the abundance of resistance genes associated with tetracycline, quinolones, and β-lactam antibiotics. In addition to sampling a CSO-impacted site near the city center, we also sampled a less urban site ~12 km upstream with no proximal sewage inputs. The tetracycline genes tetO and tetW were rarely found upstream, but were common at the CSO-impacted site, suggesting that the primary source was untreated sewage. In contrast, ampC was detected in all samples indicating a more consistent and diffuse source. The two other genes, qnrA and blaTEM, were present in only 40-50% of samples and showed more nuanced spatiotemporal patterns consistent with upstream agricultural inputs. The results of this study highlight the complex sources of ARGs in urban riverine ecosystems, and that interdisciplinary collaborations across diverse groups of stakeholders are necessary to combat the emerging threat of antibiotic resistance through anthropogenic pollution.
Collapse
Affiliation(s)
- Joseph C Morina
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Rima B Franklin
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
26
|
Xie H, Yamada K, Tamai S, Shimamoto H, Nukazawa K, Suzuki Y. Disappearance and prevalence of extended-spectrum β-lactamase-producing Escherichia coli and other coliforms in the wastewater treatment process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83950-83960. [PMID: 37351753 DOI: 10.1007/s11356-023-28382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Antibiotic-resistant bacteria (ARBs) can now be detected not only in clinical institutions but also in wastewater treatment plants (WWTPs), extending the range of emergence to residential areas. In this study, we investigated the change of antibiotic-resistant Escherichia coli (E. coli) and other coliforms in each treatment process at WWTPs. Throughout the treatment process, the numbers of E. coli and other coliforms were significantly reduced to less than 5.7 ± 0.5 CFU/100 ml and 2.4 ± 0.0×102 CFU/100 ml, respectively. However, ESBL-producing E. coli and other coliforms were detected in each treatment process (even after chlorination) at 5.6% and 4.8%, compared to the total E. coli and other coliforms counts. Then, ESBL-producing-related genes were identified via PCR analyses, and the most predominant gene was CTX-M-9 in both E. coli (47.2%) and other coliforms (47.3%). Although actual WWTPs greatly reduced the number of bacteria, the relative prevalence of ESBL-producing bacteria was increased, suggesting that ESBL-producing bacteria remain in the effluent at minimal concentrations and could be diffusing to water bodies.
Collapse
Affiliation(s)
- Hui Xie
- Department of Environment and Resource Sciences, Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - Kana Yamada
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Soichiro Tamai
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Hiroshi Shimamoto
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Kei Nukazawa
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Yoshihiro Suzuki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
27
|
Ekakoro JE, Guptill LF, Hendrix GK, Dorsey L, Ruple A. Antimicrobial Susceptibility of Bacteria Isolated from Freshwater Mussels in the Wildcat Creek Watershed, Indiana, United States. Antibiotics (Basel) 2023; 12:antibiotics12040728. [PMID: 37107090 PMCID: PMC10135199 DOI: 10.3390/antibiotics12040728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global health crisis that threatens the health of humans and animals. The spread of resistance among species may occur through our shared environment. Prevention of AMR requires integrated monitoring systems, and these systems must account for the presence of AMR in the environment in order to be effective. The purpose of this study was to establish and pilot a set of procedures for utilizing freshwater mussels as a means of surveillance for microbes with AMR in Indiana waterways. One hundred and eighty freshwater mussels were sampled from three sites along the Wildcat Creek watershed in north-central Indiana. Specimens were evaluated for the presence of ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species), Escherichia coli, Campylobacter, and Salmonella species, and the isolates were tested for antimicrobial resistance. A total of 24 bacterial isolates were obtained from tissue homogenates of freshwater mussels collected at a site directly downstream from Kokomo, Indiana. Of these, 17 were Enterobacter spp., five were Escherichia coli, one was Pseudomonas aeruginosa, and one was Klebsiella pneumoniae. All isolates were resistant to three or more antimicrobial drug classes. Further work is necessary to determine the source of the bacterial species found in the mussels.
Collapse
Affiliation(s)
- John E Ekakoro
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Lynn F Guptill
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - G Kenitra Hendrix
- Department of Comparative Pathobiology/Indiana Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Lauren Dorsey
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Audrey Ruple
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
28
|
Machado EC, Freitas DL, Leal CD, de Oliveira AT, Zerbini A, Chernicharo CA, de Araújo JC. Antibiotic resistance profile of wastewater treatment plants in Brazil reveals different patterns of resistance and multi resistant bacteria in final effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159376. [PMID: 36240935 DOI: 10.1016/j.scitotenv.2022.159376] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Wastewater treatment plants (WWTPs) are recognized as important sources of Antibiotic Resistant Bacteria (ARBs) and Antibiotic Resistant Genes (ARGs), and might play a role in the removal and dissemination of antimicrobial resistance (AMR) in the environment. Detailed information about AMR removal by the different treatment technologies commonly applied in urban WWTPs is needed. This study investigated the occurrence, removal and characterization of ARBs in WWTPs employing different technologies: WWTP-A (conventional activated sludge-CAS), WWTP-B (UASB reactor followed by biological trickling filter) and WWTP-C (modified activated sludge followed by UV disinfection-MAS/UV). Samples of raw sewage (RI) and treated effluent (TE) were collected and, through the cultivation-based method using 11 antibiotics, the antibiotic resistance profiles were characterized in a one-year period. MAS was effective in reducing ARB counts (2 to 3 log units), compared to CAS (1 log unit) and UASB/BTF (0.5 log unit). The composition of cultivable ARB differed between RI and TE samples. Escherichia was predominant in RI (56/118); whilst in TE Escherichia (31/118) was followed by Bacillus (22/118), Shigella (14/118) and Enterococcus (14/118). Most of the isolates identified (370/394) harboured at least two ARGs and in over 80 % of the isolates, 4 or more ARG (int1, blaTEM, TetA, sul1 and qnrB) were detected. A reduction in the resistance prevalence was observed in effluents after CAS and MAS processes; whilst a slight increase was observed in treated effluents from UASB/BTF and after UV disinfection stage. The multi-drug resistance (MDR) phenotype was attributed to 84.3 % of the isolates from RI (27/32) and 63.6 % from TE (21/33) samples and 52.3 % of the isolates (34/65) were resistant to carbapenems (imipenem, meropenem, ertapenem). The results indicate that treated effluents are still a source for MDR bacteria and ARGs dissemination to aquatic environments. The importance of biological sewage treatment was reinforced by the significant reductions in ARB counts observed. However, implementation of additional treatments is needed to mitigate MDR bacteria release into the environment.
Collapse
Affiliation(s)
- Elayne Cristina Machado
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Deborah Leroy Freitas
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Cintia Dutra Leal
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Amanda Teodoro de Oliveira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Adriana Zerbini
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Carlos Augusto Chernicharo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Juliana Calábria de Araújo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
29
|
Li Q, Tian L, Cai X, Wang Y, Mao Y. Plastisphere showing unique microbiome and resistome different from activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158330. [PMID: 36041613 DOI: 10.1016/j.scitotenv.2022.158330] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/04/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plastisphere (the biofilm on microplastics) in wastewater treatment plants (WWTPs) may enrich pathogens and antibiotic resistance genes (ARGs) which can cause risks to the ecological environment by discharging into receiving waters. However, the microbiome and resistome of plastisphere in activated sludge (AS) systems remain inconclusive. Here, metagenome was applied to investigate the microbial composition, functions and ARGs of the Polyvinyl chloride (PVC) plastisphere in lab-scale reactors, and revealed the effects of tetracycline (TC) and/or Cu(II) pressures on them. The results indicated that the plastisphere provided a new niche for microbiota showing unique functions distinct from the AS. Particularly, various potentially pathogenic bacteria tended to enrich in PVC plastisphere. Moreover, various ARGs were detected in plastisphere and AS, but the plastisphere had more potential ARGs hosts and a stronger correlation with ARGs. The ARGs abundances increased after exposure to TC and/or Cu(II) pressures, especially tetracycline resistance genes (TRGs), and the results further showed that TRGs with different resistance mechanisms were separately enriched in plastisphere and AS. Furthermore, the exogenous pressures from Cu(II) or/and TC also enhanced the association of potential pathogens with TRGs in PVC plastisphere. The findings contribute to assessing the potential risks of spreading pathogens and ARGs through microplastics in WWTPs.
Collapse
Affiliation(s)
- Qihao Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Li Tian
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Xunchao Cai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China; Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, Guangdong 518071, China
| | - Yicheng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China.
| |
Collapse
|
30
|
Global Distribution and Diversity of Prevalent Sewage Water Plasmidomes. mSystems 2022; 7:e0019122. [PMID: 36069451 PMCID: PMC9600348 DOI: 10.1128/msystems.00191-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sewage water from around the world contains an abundance of short plasmids, several of which harbor antimicrobial resistance genes (ARGs). The global dynamics of plasmid-derived antimicrobial resistance and functions are only starting to be unveiled. Here, we utilized a previously created data set of 159,332 assumed small plasmids from 24 different global sewage samples. The detailed phylogeny, as well as the interplay between their protein domains, ARGs, and predicted bacterial host genera, were investigated to understand sewage plasmidome dynamics globally. A total of 58,429 circular elements carried genes encoding plasmid-related features, and MASH distance analyses showed a high degree of diversity. A single (yet diverse) cluster of 520 predicted Acinetobacter plasmids was predominant among the European sewage water. Our results suggested a prevalence of plasmid-backbone gene combinations over others. This could be related to selected bacterial genera that act as bacterial hosts. These combinations also mirrored the geographical locations of the sewage samples. Our functional domain network analysis identified three groups of plasmids. However, these backbone domains were not exclusive to any given group, and Acinetobacter was the dominant host genus among the theta-replicating plasmids, which contained a reservoir of the macrolide resistance gene pair msr(E) and mph(E). Macrolide resistance genes were the most common in the sewage plasmidomes and were found in the largest number of unique plasmids. While msr(E) and mph(E) were limited to Acinetobacter, erm(B) was disseminated among a range of Firmicutes plasmids, including Staphylococcus and Streptococcus, highlighting a potential reservoir of antibiotic resistance for these pathogens from around the globe. IMPORTANCE Antimicrobial resistance is a global threat to human health, as it inhibits our ability to treat infectious diseases. This study utilizes sewage water plasmidomes to identify plasmid-derived features and highlights antimicrobial resistance genes, particularly macrolide resistance genes, as abundant in sewage water plasmidomes in Firmicutes and Acinetobacter hosts. The emergence of macrolide resistance in these bacteria suggests that macrolide selective pressure exists in sewage water and that the resident bacteria can readily acquire macrolide resistance via small plasmids.
Collapse
|
31
|
Brown DC, Aggarwal N, Turner RJ. Exploration of the presence and abundance of multidrug resistance efflux genes in oil and gas environments. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36190831 DOI: 10.1099/mic.0.001248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As sequencing technology improves and the cost of metagenome sequencing decreases, the number of sequenced environments increases. These metagenomes provide a wealth of data in the form of annotated and unannotated genes. The role of multidrug resistance efflux pumps (MDREPs) is the removal of antibiotics, biocides and toxic metabolites created during aromatic hydrocarbon metabolism. Due to their naturally occurring role in hydrocarbon metabolism and their role in biocide tolerance, MDREP genes are of particular importance for the protection of pipeline assets. However, the heterogeneity of MDREP genes creates a challenge during annotation and detection. Here we use a selection of primers designed to target MDREPs in six pure species and apply them to publicly available metagenomes associated with oil and gas environments. Using in silico PCR with relaxed primer binding conditions we probed the metagenomes of a shale reservoir, a heavy oil tailings pond, a civil wastewater treatment, two marine sediments exposed to hydrocarbons following the Deepwater Horizon oil spill and a non-exposed marine sediment to assess the presence and abundance of MDREP genes. Through relaxed primer binding conditions during in silico PCR, the prevalence of MDREPs was determined. The percentage of nucleotide sequences identified by the MDREP primers was partially augmented by exposure to hydrocarbons in marine sediment and in shale reservoir compared to hydrocarbon-free marine sediments while tailings ponds and wastewater had the highest percentages. We believe this approach lays the groundwork for a supervised method of identifying poorly conserved genes within metagenomes.
Collapse
|
32
|
Mustafa SS, Batool R, Kamran M, Javed H, Jamil N. Evaluating the Role of Wastewaters as Reservoirs of Antibiotic-Resistant ESKAPEE Bacteria Using Phenotypic and Molecular Methods. Infect Drug Resist 2022; 15:5715-5728. [PMID: 36199818 PMCID: PMC9527703 DOI: 10.2147/idr.s368886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Methodology Results Conclusion
Collapse
Affiliation(s)
- Syeda Samar Mustafa
- Institute of Microbiology and Molecular Genetics, Quaid e Azam Campus, University of the Punjab 54590, Lahore, Pakistan
- Correspondence: Syeda Samar Mustafa, Email
| | - Rida Batool
- Institute of Microbiology and Molecular Genetics, Quaid e Azam Campus, University of the Punjab 54590, Lahore, Pakistan
| | - Muhammad Kamran
- Queensland Alliance for Agriculture and Food Innovation Centre for Animal Science, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Hasnain Javed
- Provincial Public Health Reference Lab, Punjab AIDS Control Program, Lahore, Pakistan
| | - Nazia Jamil
- Institute of Microbiology and Molecular Genetics, Quaid e Azam Campus, University of the Punjab 54590, Lahore, Pakistan
| |
Collapse
|
33
|
Chen L, Wu Y, Zhao Q, Tang C, Pang X, Gu S, Li X. Omics analyses indicate sdhC/D act as hubs of early response of E. coli to antibiotics. Arch Microbiol 2022; 204:544. [DOI: 10.1007/s00203-022-03156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
|
34
|
Sekizuka T, Itokawa K, Tanaka R, Hashino M, Yatsu K, Kuroda M. Metagenomic Analysis of Urban Wastewater Treatment Plant Effluents in Tokyo. Infect Drug Resist 2022; 15:4763-4777. [PMID: 36039320 PMCID: PMC9419991 DOI: 10.2147/idr.s370669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Urban wastewater treatment plant (WWTP) effluents, even with proper treatment, may cause antimicrobial resistance (AMR) burden, with a high frequency of acquired antimicrobial resistance genes (ARGs). The dissemination of ARGs into the environment increases the risk of infectious diseases; however, there is little direct evidence regarding their epidemiological effects. This study aimed to assess effluents from urban WWTPs around the Tama River and Tokyo Bay using metagenomic analysis of (AMR) genes (ARGs) and heavy-metal resistance genes. Methods Metagenomic DNA-seq analysis of water samples and resistome analysis were performed. Results The most prevalent ARG was the sulfonamide resistance gene, sul1, followed by the quaternary ammonium compound resistance gene, qacE, suggesting that basic gene sets (sul1 and ∆qacE) in the class 1 integrons are the predominant ARGs. The aminoglycoside resistance genes, aadA and aph, and macrolide resistance genes, msr(E) and mph(E), were the predominant ARGs against each antimicrobial. bla OXA and bla GES were frequently detected, whereas the bla CTX-M cluster was faintly detected. Non-metric multidimensional scaling plot analysis and canonical correspondence analysis results suggested that marked differences in ARGs could be involved in the seasonal differences; qnrS2, aac(6')-Ib, and mef(C) increased markedly in summer, whereas msr(E) was more frequently detected in winter. Heavy-metal (Hg and Cu) resistance genes (HMRGs) were significantly detected in effluents from all WWTPs. Conclusion We characterized a baseline level of the environmental ARG/HMRG profile in the overall community, suggesting that environmental AMR surveillance, particularly in urban WWTPs, is a valuable first step in monitoring the AMR dissemination of bacteria from predominantly healthy individuals carrying notable ARG/Bs.
Collapse
Affiliation(s)
- Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Kentaro Itokawa
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Rina Tanaka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Masanori Hashino
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Koji Yatsu
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| |
Collapse
|
35
|
Vasudeva G, Singh H, Paliwal S, Pinnaka AK. Metagenomics: An Approach for Unraveling the Community Structure and Functional Potential of Activated Sludge of a Common Effluent Treatment Plant. Front Microbiol 2022; 13:933373. [PMID: 35958153 PMCID: PMC9358654 DOI: 10.3389/fmicb.2022.933373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
The common effluent treatment plant (CETP) located at Baddi treats the industrial effluent from various industries, leading to the pooling of a diverse range of substrates and metabolites. The nutrient loading and its availability decide the balance of the microbial community and its diversity. The samples thus collected from the activated sludge (BS14) of CETP and Sirsa river (SR1) from the vicinity of CETP effluent discharge were processed for the whole metagenome analysis to reveal the microbial community and its functional potential. The taxonomic classification of the BS14 sample showed the dominance of the bacterial community with 96% of abundance, whereas the SR1 was populated by eukaryotes representing 50.4% of the community of SR1. The bacterial community of SR1 was constituted of 47.2%. The functional analysis of BS14 and SR1 with GhostKOALA against the KEGG database assigned 43.7% and 27.8% of the open reading frames (ORFs) with functions. It revealed the xenobiotic degradation modules with complete pathways along with resistance against the beta-lactams. The analysis with the comprehensive antibiotic resistance database (CARD) revealed 33 and 32 unique types of antimicrobial resistance in BS14 and SR1, respectively. Both the samples were dominated by the beta-lactam resistance genes. The carbohydrate-active enzyme (CAZy) database assigned a total of 6,611 and 2,941 active enzymes to BS14 and SR1, respectively. In contrast, the glycosyl hydrolases (GH) and glycosyltransferases (GT) class of enzymes were found to be abundant in both the samples as compared with polysaccharide lyases (PL), auxiliary activities (AA), carbohydrate esterases (CE), and carbohydrate-binding module (CBM).
Collapse
|
36
|
Kang M, Yang J, Kim S, Park J, Kim M, Park W. Occurrence of antibiotic resistance genes and multidrug-resistant bacteria during wastewater treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152331. [PMID: 34915016 DOI: 10.1016/j.scitotenv.2021.152331] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/11/2021] [Accepted: 12/07/2021] [Indexed: 05/09/2023]
Abstract
Wastewater treatment plants (WWTPs) constantly receive a wide variety of contaminants, including pharmaceuticals, and are potential reservoirs of antibiotic resistance genes (ARGs). This favors the development of multidrug-resistant bacteria (MRB) through horizontal gene transfer. Samples from five different WWTP processes were collected in September 2020 and January 2021 to monitor ARG resistomes and culturable MRB in the presence of eight different antibiotics. Nanopore-based ARG abundance and bacterial community analyses suggested that ARG accumulation favors the generation of MRB. Activated and mixed sludges tended to have lower bacterial diversity and ARG abundance because of selective forces that favored the growth of specific microorganisms during aeration processes. Escherichia strains enriched in WWTPs (up to 71%) were dominant in all the samples, whereas Cloacamonas species were highly abundant only in anaerobically digested sludge samples (60%-79%). Two ARG types [sulfonamide resistance genes (sul1) and aminoglycoside resistance genes (aadA1, aadA13, and aadA2)] were prevalent in all the processes. The total counts of culturable MRB, such as Niabella, Enterococcus, Bacillus, and Chryseobacterium species, gradually increased during aerobic WWTP processes. Genomic analyses of all MRB isolated from the samples revealed that the resistome of Enterococcus species harbored the highest number of ARGs (7-18 ARGs), commonly encoding ant(6)-la, lnu(B), erm(B), and tet(S/M). On the other hand, Niablella strains possibly had intrinsic resistant phenotypes without ARGs. All MRB possessed ARGs originating from the same mobile genetic elements, suggesting that WWTPs are hotspots for the migration of ARGs and emergence of MRB.
Collapse
Affiliation(s)
- Mingyeong Kang
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jihye Yang
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Suhyun Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jaeeun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Misung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
37
|
Resistant Genes and Multidrug-Resistant Bacteria in Wastewater: A Study of Their Transfer to the Water Reservoir in the Czech Republic. Life (Basel) 2022; 12:life12020147. [PMID: 35207435 PMCID: PMC8875776 DOI: 10.3390/life12020147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 01/01/2023] Open
Abstract
Wastewater is considered the most serious source of the spread of antibiotic resistance in the environment. This work, therefore, focuses on the fate and spread of antibiotic resistance genes (ARGs) in wastewater and the monitoring of multidrug-resistant strains. ARGs were monitored in the nitrification and sedimentation tanks of the wastewater treatment plant (WWTP) and in the dam into which this WWTP flows, at various times. The highest relative abundance was found for the blaTEM > tetW > blaNDM-1 > vanA resistance genes, respectively. An increased concentration of tetracycline (up to 96.00 ng/L) and ampicillin (up to 19.00 ng/L) was found in water samples compared to other antibiotics detected. The increased incidence of seven ARGs and four antibiotics was observed in the November and December sampling times. Isolated ampicillin-resistant strains showed a high degree of resistance to ampicillin (61.2% of the total isolates had a minimum inhibitory concentration (MIC) ≥ 20 mg/mL). In 87.8% of isolates, out of the total number, the occurrence of two or more ARGs was confirmed. These multidrug-resistant strains were most often identified as Aeromonas sp. This strain could represent a significant role in the spread of multidrug resistance through wastewater in the environment.
Collapse
|
38
|
Raza S, Shin H, Hur HG, Unno T. Higher abundance of core antimicrobial resistant genes in effluent from wastewater treatment plants. WATER RESEARCH 2022; 208:117882. [PMID: 34837814 DOI: 10.1016/j.watres.2021.117882] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Wastewater treatment plants (WWTPs) receive sewage water from a variety of sources, including livestock farms, hospitals, industries, and households, that contain antimicrobial resistant bacteria (ARB) and antimicrobial resistant genes (ARGs). Current treatment technologies are unable to completely remove ARB and ARGs, which are eventually released into the aquatic environment. This study focused on the core resistome of urban WWTPs that are persistent through wastewater treatment processes. We adopted the Hiseq-based metagenomic sequencing approach to identify the core resistome, their genetic context, and pathogenic potential of core ARGs in the influent (IN) and effluent (EF) samples of 12 urban WWTPs in South Korea. In this study, the abundance of ARGs ranged from 0.32 to 3.5 copies of ARGs per copy of the 16S rRNA gene, where the IN samples were relatively higher than the EF samples, especially for the macrolide-lincosamide-streptogramin (MLS)- and tetracycline- resistant genes. On the other hand, there were 43 core ARGs sharing up to 90% of the total, among which the relative abundance of sul1, APH(3'')-lb, and RbpA was higher in EF than in IN (p < 0.05). Moreover, tetracycline and sulfonamide-related core ARGs in both EF and IN were significantly more abundant on plasmids than on chromosomes (p < 0.05). We also found that the majority of core ARGs were carried by opportunistic pathogens such as Acinetobacter baumannii, Enterobacter cloacae, and Pseudomonas aeruginosa in both IN and EF. In addition, phages were the only mobile elements whose abundance correlated with that of core ARGs in EF, suggesting that transduction may play a major role in disseminating ARGs in the receiving water environment of the urban WWTP. The persistent release of core ARGs with pathogenic potential into environmental water is of immediate concern. The mobility of ARGs and ARBs in the environment is a major public health concern. These results should be taken into consideration when developing policy to mitigate environmental dissemination of ARG by WWTPs.
Collapse
Affiliation(s)
- Shahbaz Raza
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243, Republic of Korea; Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hanseob Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Tatsuya Unno
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
39
|
Hassoun-Kheir N, Stabholz Y, Kreft JU, de la Cruz R, Dechesne A, Smets BF, Romalde JL, Lema A, Balboa S, García-Riestra C, Torres-Sangiao E, Neuberger A, Graham D, Quintela-Baluja M, Stekel DJ, Graham J, Pruden A, Nesme J, Sørensen SJ, Hough R, Paul M. EMBRACE-WATERS statement: Recommendations for reporting of studies on antimicrobial resistance in wastewater and related aquatic environments. One Health 2021; 13:100339. [PMID: 34746357 PMCID: PMC8554267 DOI: 10.1016/j.onehlt.2021.100339] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A One Health approach requires integrative research to elucidate antimicrobial resistance (AMR) in the environment and the risks it poses to human health. Research on this topic involves experts from diverse backgrounds and professions. Shortcomings exist in terms of consistent, complete, and transparent reporting in many environmental studies. Standardized reporting will improve the quality of scientific papers, enable meta-analyses and enhance the communication among different experts. In this study, we aimed to generate a consensus of reporting standards for AMR research in wastewater and related aquatic environments. METHODS Based on a risk of bias assessment of the literature in a systematic review, we proposed a set of study quality indicators. We then used a multistep modified Delphi consensus to develop the EMBRACE-WATERS statement (rEporting antiMicroBial ResistAnCE in WATERS), a checklist of recommendations for reporting in studies of AMR in wastewater and related aquatic environments. FINDINGS Consensus was achieved among a multidisciplinary panel of twenty-one experts in three steps. The developed EMBRACE-WATERS statement incorporates 21 items. Each item contains essential elements of high-quality reporting and is followed by an explanation of their rationale and a reporting-example. The EMBRACE-WATERS statement is primarily intended to be used by investigators to ensure transparent and comprehensive reporting of their studies. It can also guide peer-reviewers and editors in evaluation of manuscripts on AMR in the aquatic environment. This statement is not intended to be used to guide investigators on the methodology of their research. INTERPRETATION We are hopeful that this statement will improve the reporting quality of future studies of AMR in wastewater and related aquatic environments. Its uptake would generate a common language to be used among researchers from different disciplines, thus advancing the One Health approach towards understanding AMR spread across aquatic environments. Similar initiatives are needed in other areas of One Health research.
Collapse
Affiliation(s)
- Nasreen Hassoun-Kheir
- Infectious Diseases Institute, Rambam Health Care Campus, HaAliya HaShniya St 8, Haifa 3109601, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Efron St 1, Haifa 3109601, Israel
| | - Yoav Stabholz
- Infectious Diseases Institute, Rambam Health Care Campus, HaAliya HaShniya St 8, Haifa 3109601, Israel
| | - Jan-Ulrich Kreft
- School of Biosciences, Institute of Microbiology and Infection (IMI), Centre for Computational Biology (CCB), University of Birmingham, Birmingham, UK
| | - Roberto de la Cruz
- School of Biosciences, Institute of Microbiology and Infection (IMI), Centre for Computational Biology (CCB), University of Birmingham, Birmingham, UK
| | - Arnaud Dechesne
- Technical University of Denmark, Department of Environmental Engineering, bygning 115, Bygningstorvet, 2800 Kongens Lyngby, Denmark
| | - Barth F. Smets
- Technical University of Denmark, Department of Environmental Engineering, bygning 115, Bygningstorvet, 2800 Kongens Lyngby, Denmark
| | - Jesús L. Romalde
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
- CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Alberto Lema
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Sabela Balboa
- CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Carlos García-Riestra
- Department of Microbiology and Parasitology, University Hospital Complex of Santiago (CHUS), Spain
| | - Eva Torres-Sangiao
- Escherichia coli Group, Research Foundation Institute (FIDIS), University Hospital Complex (CHUS), Santiago de Compostela, ES, Spain
| | - Ami Neuberger
- Infectious Diseases Institute, Rambam Health Care Campus, HaAliya HaShniya St 8, Haifa 3109601, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Efron St 1, Haifa 3109601, Israel
| | - David Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | | | - Dov J. Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough LE12 5RD, UK
| | - Jay Graham
- University of California, Berkeley School of Public Health, Berkeley, CA, USA
| | - Amy Pruden
- The Charles Edward Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Joseph Nesme
- Section of Microbiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Søren Johannes Sørensen
- Section of Microbiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Rupert Hough
- Information and Computational Sciences, The James Hutton Institute, Aberdeen AB15 8QH, Scotland, UK
| | - Mical Paul
- Infectious Diseases Institute, Rambam Health Care Campus, HaAliya HaShniya St 8, Haifa 3109601, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Efron St 1, Haifa 3109601, Israel
| |
Collapse
|
40
|
Qian M, Wang J, Ji X, Yang H, Tang B, Zhang H, Yang G, Bao Z, Jin Y. Sub-chronic exposure to antibiotics doxycycline, oxytetracycline or florfenicol impacts gut barrier and induces gut microbiota dysbiosis in adult zebrafish (Daino rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112464. [PMID: 34198189 DOI: 10.1016/j.ecoenv.2021.112464] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics are widely used in the treatment of bacterial infections and as food additives in the livestock industry. The wide usage of antibiotics causes residues in animal products, like milk, eggs and meat. A number of studies have reported that antibiotic residues exist at high concentrations in watercourses around the world. Doxycycline (DH), oxytetracycline (OTCC) and florfenicol (FF) are the three most commonly used veterinary antibiotics in China. However, studies of the toxic effects of DH, OTCC and FF are limited. In this study, six-moth-old healthy male adult zebrafish were exposed to 0, 10, 30, 100 μg/L DH, OTCC or FF for 21 days. After exposure, some biochemical parameters changed significantly, including total cholesterol (TC), triglyceride (TG), pyruvate and acid phosphatase (ACP). In addition, mucus secretion in the gut decreased and the transcription of related genes also decreased significantly. Moreover, the composition of microbiota in the gut changed significantly. DH, OTCC and FF exposure caused the decrease of diversity of gut microbiota. The relative abundance of Proteobacteria increased significantly after OTCC and FF exposure and Fusobacteria decreased in all antibiotic-treated groups. Further functional prediction analysis also suggested changes in gut microbiota in the OTCC and FF-treated groups, especially those linked to metabolism. To support this idea, we confirmed that some glycolipid related genes also increased significantly in the liver of adult zebrafish after antibiotic exposure. According to these results, DH, OTCC or FF exposure could cause the gut microbiota dysbiosis and dysfunction, and hepatic metabolic disorder in adult male zebrafish.
Collapse
Affiliation(s)
- Mingrong Qian
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianmei Wang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaofeng Ji
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hua Yang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Biao Tang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hu Zhang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guiling Yang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Zhiwei Bao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|