1
|
Dutta S, Chatterjee N, Gallina NLF, Kar S, Koley H, Nanda PK, Biswas O, Das AK, Biswas S, Bhunia AK, Dhar P. Diet, microbiome, and probiotics establish a crucial link in vaccine efficacy. Crit Rev Microbiol 2025:1-26. [PMID: 40110742 DOI: 10.1080/1040841x.2025.2480230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/12/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Vaccination plays a critical role in public health by reducing the incidence and prevalence of infectious diseases. The efficacy of a vaccine has numerous determinants, which include age, sex, genetics, environment, geographic location, nutritional status, maternal antibodies, and prior exposure to pathogens. However, little is known about the role of gut microbiome in vaccine efficacy and how it can be targeted through dietary interventions to improve immunological responses. Unveiling this link is imperative, particularly in the post-pandemic world, considering impaired COVID-19 vaccine response observed in dysbiotic individuals. Therefore, this article aims to comprehensively review how diet and probiotics can modulate gut microbiome composition, which is linked to vaccine efficacy. Dietary fiber and polyphenolic compounds derived from plant-based foods improve gut microbial diversity and vaccine efficacy by promoting the growth of short-chain fatty acids-producing microbes. On the other hand, animal-based foods have mixed effects - whey protein and fish oil promote gut eubiosis and vaccine efficacy. In contrast, lard and red meat have adverse effects. Studies further indicate that probiotic supplements exert varied effects, mostly strain and dosage-specific. Interlinking diet, microbiome, probiotics, and vaccines will reveal opportunities for newer research on diet-induced microbiome-manipulated precision vaccination strategies against infectious diseases.
Collapse
Affiliation(s)
- Soumam Dutta
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Salt Lake City, Kolkata, India
| | - Nicholas L F Gallina
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN, USA
| | - Sanjukta Kar
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections, Beliaghata, Kolkata, India
| | - Pramod Kumar Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata, India
| | - Olipriya Biswas
- Department of Fishery Engineering, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Arun K Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata, India
| | - Subhasish Biswas
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Salt Lake City, Kolkata, India
| |
Collapse
|
2
|
Gunther RS, Farrell MB, Banks KP. Got the Munchies for an Egg Sandwich? The Effects of Cannabis on Bowel Motility and Beyond. J Nucl Med Technol 2024; 52:8-14. [PMID: 38443102 PMCID: PMC10924153 DOI: 10.2967/jnmt.123.266816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/11/2023] [Indexed: 03/07/2024] Open
Abstract
The use of medicinal cannabis has a long history dating back thousands of years. Recent discoveries have shed light on its mechanism of action with the identification of cannabinoid receptors and endocannabinoids, which make up the body's endocannabinoid system. Cannabinoid receptors, particularly the cannabinoid 1 and 2 receptors, play a crucial role in modulating the gut-brain axis and serve as potential therapeutic targets for gastrointestinal motility and inflammatory disorders. With increasing legalization of cannabis and a rising number of users, understanding the effects of cannabis on gut motility is essential for nuclear medicine providers. Although tetrahydrocannabinol, the principal psychoactive constituent of cannabis, may decrease gut motility in experimental settings, it appears to paradoxically improve symptoms in gastroparesis. Treatment effects are difficult to measure given the large number of variables that could significantly alter outcomes, such as cannabinoid type, potency, and route of intake. Another consideration is the highly personalized gut microbiome, which directly interacts with the endocannabinoid system. Further research is required to delineate these multifaceted, complex cannabinoid interactions. The goal of this article is to explore the knowns and unknowns of the impact of cannabis on the alimentary system.
Collapse
Affiliation(s)
- Rutger S Gunther
- Uniformed Services University of the Health Sciences, Bethesda, Maryland;
- Department of Radiology, Brooke Army Medical Center, San Antonio, Texas; and
| | - Mary B Farrell
- Intersocietal Accreditation Commission, Ellicott City, Maryland
| | - Kevin P Banks
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Radiology, Brooke Army Medical Center, San Antonio, Texas; and
| |
Collapse
|
3
|
Kassis A, Fichot MC, Horcajada MN, Horstman AMH, Duncan P, Bergonzelli G, Preitner N, Zimmermann D, Bosco N, Vidal K, Donato-Capel L. Nutritional and lifestyle management of the aging journey: A narrative review. Front Nutr 2023; 9:1087505. [PMID: 36761987 PMCID: PMC9903079 DOI: 10.3389/fnut.2022.1087505] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023] Open
Abstract
With age, the physiological responses to occasional or regular stressors from a broad range of functions tend to change and adjust at a different pace and restoring these functions in the normal healthy range becomes increasingly challenging. Even if this natural decline is somehow unavoidable, opportunities exist to slow down and attenuate the impact of advancing age on major physiological processes which, when weakened, constitute the hallmarks of aging. This narrative review revisits the current knowledge related to the aging process and its impact on key metabolic functions including immune, digestive, nervous, musculoskeletal, and cardiovascular functions; and revisits insights into the important biological targets that could inspire effective strategies to promote healthy aging.
Collapse
Affiliation(s)
- Amira Kassis
- Whiteboard Nutrition Science, Beaconsfield, QC, Canada,Amira Kassis,
| | | | | | | | - Peter Duncan
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | | | - Nicolas Preitner
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Diane Zimmermann
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Nabil Bosco
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Karine Vidal
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Laurence Donato-Capel
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland,*Correspondence: Laurence Donato-Capel,
| |
Collapse
|
4
|
Ratiner K, Abdeen SK, Goldenberg K, Elinav E. Utilization of Host and Microbiome Features in Determination of Biological Aging. Microorganisms 2022; 10:668. [PMID: 35336242 PMCID: PMC8950177 DOI: 10.3390/microorganisms10030668] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022] Open
Abstract
The term 'old age' generally refers to a period characterized by profound changes in human physiological functions and susceptibility to disease that accompanies the final years of a person's life. Despite the conventional definition of old age as exceeding the age of 65 years old, quantifying aging as a function of life years does not necessarily reflect how the human body ages. In contrast, characterizing biological (or physiological) aging based on functional parameters may better reflect a person's temporal physiological status and associated disease susceptibility state. As such, differentiating 'chronological aging' from 'biological aging' holds the key to identifying individuals featuring accelerated aging processes despite having a young chronological age and stratifying them to tailored surveillance, diagnosis, prevention, and treatment. Emerging evidence suggests that the gut microbiome changes along with physiological aging and may play a pivotal role in a variety of age-related diseases, in a manner that does not necessarily correlate with chronological age. Harnessing of individualized gut microbiome data and integration of host and microbiome parameters using artificial intelligence and machine learning pipelines may enable us to more accurately define aging clocks. Such holobiont-based estimates of a person's physiological age may facilitate prediction of age-related physiological status and risk of development of age-associated diseases.
Collapse
Affiliation(s)
- Karina Ratiner
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel; (K.R.); (S.K.A.); (K.G.)
| | - Suhaib K. Abdeen
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel; (K.R.); (S.K.A.); (K.G.)
| | - Kim Goldenberg
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel; (K.R.); (S.K.A.); (K.G.)
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel; (K.R.); (S.K.A.); (K.G.)
- Division of Cancer-Microbiome Research, Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|