1
|
Druciarek T, Tzanetakis IE. Invisible vectors, visible impact: The role of eriophyoid mites in emaravirus disease dynamics. Virology 2025; 606:110478. [PMID: 40112629 DOI: 10.1016/j.virol.2025.110478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/22/2025]
Abstract
Emaraviruses are segmented, negative-sense RNA viruses that are transmitted by eriophyoid mites. Advances in virus detection and discovery have significantly improved our understanding of these viruses, yet several challenges persist. This review emphasizes the significant gaps in our knowledge of virus replication, transmission dynamics, and plant-virus-vector interactions and highlights the role of mite vectors in the epidemiology and control of emaraviruses. By bridging the knowledge gaps with advanced genomic tools such as high-throughput sequencing and bioinformatics and targeted acarological research we will achieve sustainable control strategies and reduce the impact of emaravirus-caused diseases.
Collapse
Affiliation(s)
- Tobiasz Druciarek
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, Arkansas, 72701, United States; Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, Arkansas, 72701, United States.
| |
Collapse
|
2
|
Roda A, Nachman G, Scheiner K, Carrillo D. Density and distribution of the flat mite (Brevipalpus yothersi) (Acari: Tenuipalpidae) on four Hibiscus varieties: do leaves tell the full story? EXPERIMENTAL & APPLIED ACAROLOGY 2024; 94:9. [PMID: 39668264 PMCID: PMC11638289 DOI: 10.1007/s10493-024-00970-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/23/2024] [Indexed: 12/14/2024]
Abstract
The flat mite, Brevipalpus yothersi (Baker, 1949) is widely distributed in the southern United States. This mite is associated with a citrus leprosis virus ((CiLV-C2) Cilevirus colombiaense strain hibiscus) infecting ornamental hibiscus (Hibiscus rosa-sinensis) in Florida and Hawaii. Because hibiscus is a highly traded ornamental plant, CiLV-C2 has the potential to spread. In laboratory experiments, the abundance and distribution of B. yothersi were studied on four varieties of tropical hibiscus. Plants, grown from cuttings, were infested with female mites, and held in environmental chambers (25 °C, 75% RH). After 3 months, the plants were divided into strata representing the top, middle and bottom of the plant. All mites (including eggs) found on the leaves and woody parts (main stems and side branches) were counted, and the surface area of each part calculated. The number and surface area of leaves and woody parts varied between hibiscus varieties; however, the differences between varieties with respect to total number of mites/plant and mites/cm2 were not statistically significant. There were twice as many mites on the woody parts than on the leaves. Most mites were found in the bottom stratum of the plants, and they showed an aggregated spatial distribution. The implications of mite distributions for assessing population sizes of B. yothersi were analyzed with the purpose of optimizing sampling without damaging the plant. The efficient sampling protocol developed is an important tool for managing the vector and thereby the disease.
Collapse
Affiliation(s)
- Amy Roda
- United States Department of Agriculture APHIS-PPQ-S&T, Miami, FL, USA.
| | - Gösta Nachman
- Department of Biology, Section of Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
| | - Katrina Scheiner
- United States Department of Agriculture APHIS-PPQ-S&T, Miami, FL, USA
| | - Daniel Carrillo
- University of Florida Tropical Research and Education Center, Homestead, FL, USA
| |
Collapse
|
3
|
Lu G, Ye ZX, Qi YH, Lu JB, Mao QZ, Zhuo JC, Huang HJ, He YJ, Li YY, Xu ZT, Chen JP, Zhang CX, Li JM. Endogenous nege-like viral elements in arthropod genomes reveal virus-host coevolution and ancient history of two plant virus families. J Virol 2024; 98:e0099724. [PMID: 39212930 PMCID: PMC11494950 DOI: 10.1128/jvi.00997-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
Negevirus is a recently proposed taxon of arthropod-infecting virus, which is associated with plant viruses of two families (Virgaviridae and Kitaviridae). Nevertheless, the evolutionary history of negevirus-host and its relationship with plant viruses remain poorly understood. Endogenous nege-like viral elements (ENVEs) are ancient nege-like viral sequences integrated into the arthropod genomes, which can serve as the molecular fossil records of previous viral infection. In this study, 292 ENVEs were identified in 150 published arthropod genomes, revealing the evolutionary history of nege-like viruses and two related plant virus families. We discovered three novel and eight strains of nege-like viruses in 11 aphid species. Further analysis indicated that 10 ENVEs were detected in six aphid genomes, and they were divided into four types (ENVE1-ENVE4). Orthologous integration and phylogenetic analyses revealed that nege-like viruses had a history of infection of over 60 My and coexisted with aphid ancestors throughout the Cenozoic Era. Moreover, two nege-like viral proteins (CP and SP24) were highly homologous to those of plant viruses in the families Virgaviridae and Kitaviridae. CP- and SP24-derived ENVEs were widely integrated into numerous arthropod genomes. These results demonstrate that nege-like viruses have a long-term coexistence with arthropod hosts and plant viruses of the two families, Virgaviridae and Kitaviridae, which may have evolved from the nege-like virus ancestor through horizontal virus transfer events. These findings broaden our perspective on the history of viral infection in arthropods and the origins of plant viruses. IMPORTANCE Although negevirus is phylogenetically related to plant virus, the evolutionary history of negevirus-host and its relationship with plant virus remain largely unknown. In this study, we used endogenous nege-like viral elements (ENVEs) as the molecular fossil records to investigate the history of nege-like viral infection in arthropod hosts and the evolution of two related plant virus families (Virgaviridae and Kitaviridae). Our results showed the infection of nege-like viruses for over 60 My during the arthropod evolution. ENVEs highly homologous to viral sequences in Virgaviridae and Kitaviridae were present in a wide range of arthropod genomes but were absent in plant genomes, indicating that plant viruses in these two families possibly evolved from the nege-like virus ancestor through cross-species horizontal virus transmission. Our findings provide a new perspective on the virus-host coevolution and the origins of plant viruses.
Collapse
Affiliation(s)
- Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yu-Hua Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Qian-Zhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Ji-Chong Zhuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yu-Juan He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yi-Yuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhong-Tian Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Roy A, Grinstead S, Leon Martínez G, Pinzón JCC, Nunziata SO, Padmanabhan C, Hammond J. Meta-Transcriptomic Analysis Uncovers the Presence of Four Novel Viruses and Multiple Known Virus Genera in a Single Hibiscus rosa-sinensis Plant in Colombia. Viruses 2024; 16:267. [PMID: 38400042 PMCID: PMC10891833 DOI: 10.3390/v16020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Hibiscus is not native to Colombia but well suited to its arid soil and dry climates. A single hibiscus plant from Risaralda, showing black spots on upper and lower sides of its leaves, was collected for virome analysis using meta-transcriptomic high-throughput sequencing technology. Bioinformatic analysis identified 12.5% of the total reads in the Ribo-Zero cDNA library which mapped to viral genomes. BLAST searches revealed the presence of carlavirus, potexvirus, and of known members of the genera Betacarmovirus, Cilevirus, Nepovirus, and Tobamovirus in the sample; confirmed by RT-PCR with virus-specific primers followed by amplicon sequencing. Furthermore, in silico analysis suggested the possibility of a novel soymovirus, and a new hibiscus strain of citrus leprosis virus C2 in the mixed infection. Both RNA dependent RNA polymerase and coat protein gene sequences of the potex and carla viruses shared less than 72% nucleotide and 80% amino acid identities with any alphaflexi- and betaflexi-virus sequences available in GenBank, identifying three novel carlavirus and one potexvirus species in the Hibiscus rosa-sinensis plant. The detection of physalis vein necrosis nepovirus and passion fruit green spot cilevirus in hibiscus are also new reports from Colombia. Overall, the meta-transcriptome analysis identified the complex virome associated with the black spot symptoms on hibiscus leaves and demonstrated the diversity of virus genera tolerated in the mixed infection of a single H. rosa-sinensis plant.
Collapse
Affiliation(s)
- Avijit Roy
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), Beltsville, MD 20705, USA
| | - Sam Grinstead
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), Beltsville, MD 20705, USA
| | - Guillermo Leon Martínez
- AGROSAVIA, Centro de Investigación La Libertad, Km.17 vía Pto. Lopez, Villavicencio, Meta, Colombia
| | | | - Schyler O Nunziata
- Plant Pathogen Confirmatory Diagnostics Laboratory, Science and Technology, Plant Protection and Quarantine, Animal and Plant Health Inspection Service, USDA, Laurel, MD 20708, USA
| | - Chellappan Padmanabhan
- Plant Pathogen Confirmatory Diagnostics Laboratory, Science and Technology, Plant Protection and Quarantine, Animal and Plant Health Inspection Service, USDA, Laurel, MD 20708, USA
| | - John Hammond
- Floral and Nursery Plants Research Unit, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
5
|
Olmedo-Velarde A, Larrea-Sarmiento A, Wang X, Hu J, Melzer M. A Breakthrough in Kitavirids: Genetic Variability, Reverse Genetics, Koch's Postulates, and Transmission of Hibiscus Green Spot Virus 2. PHYTOPATHOLOGY 2024; 114:282-293. [PMID: 37366568 DOI: 10.1094/phyto-04-23-0110-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Hibiscus green spot virus 2 (HGSV-2), a member of the genus Higrevirus (family Kitaviridae), is a positive-stranded RNA virus associated with leprosis-like symptoms in citrus and green spots on leaves in hibiscus. HGSV-2 has only been reported in Hawaii, and while it is speculated that mites in the genus Brevipalpus might be responsible for its transmission, proper transmission assays have yet to be conducted. This study characterizes additional citrus and hibiscus isolates of HGSV-2 collected from two Hawaiian Islands. We constructed an infectious cDNA clone from a hibiscus isolate of HGSV-2 collected on Oahu and demonstrated its ability to infect several experimental hosts, including Phaseolus vulgaris, Nicotiana tabacum, and N. benthamiana, as well as natural hosts, Citrus reticulata and Hibiscus arnottianus. Bacilliform virions with varied sizes of 33 to 120 nm (length) and 14 to 70 nm (diameter) were observed in partially purified preparations obtained from agroinoculated leaves. Virus progeny from the infectious cDNA clone was found to be infectious after mechanical transmission to N. benthamiana and to cause local lesions. Finally, an isoline colony of the mite Brevipalpus azores had vector competence to transmit a citrus isolate of HGSV-2 collected from Maui to citrus and hibiscus plants, demonstrating the mite-borne nature of HGSV-2. The infectious cDNA clone developed in this study is the first reverse-genetics system for a kitavirid and will be fundamental to better characterize basic biology of HGSV-2 and its interactions with host plants and mite vectors.
Collapse
Affiliation(s)
- Alejandro Olmedo-Velarde
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| | - Adriana Larrea-Sarmiento
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| | - Xupeng Wang
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| | - John Hu
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| | - Michael Melzer
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| |
Collapse
|
6
|
Ramos-González PL, Dias Arena G, Tassi AD, Chabi-Jesus C, Watanabe Kitajima E, Freitas-Astúa J. Kitaviruses: A Window to Atypical Plant Viruses Causing Nonsystemic Diseases. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:97-118. [PMID: 37217202 DOI: 10.1146/annurev-phyto-021622-121351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Kitaviridae is a family of plant-infecting viruses that have multiple positive-sense, single-stranded RNA genomic segments. Kitaviruses are assigned into the genera Cilevirus, Higrevirus, and Blunervirus, mainly on the basis of the diversity of their genomic organization. Cell-to-cell movement of most kitaviruses is provided by the 30K family of proteins or the binary movement block, considered an alternative movement module among plant viruses. Kitaviruses stand out for producing conspicuously unusual locally restricted infections and showing deficient or nonsystemic movement likely resulting from incompatible or suboptimal interactions with their hosts. Transmission of kitaviruses is mediated by mites of many species of the genus Brevipalpus and at least one species of eriophyids. Kitavirus genomes encode numerous orphan open reading frames but RNA-dependent RNA polymerase and the transmembrane helix-containing protein, generically called SP24, typify a close phylogenetic link with arthropod viruses. Kitaviruses infect a large range of host plants and cause diseases of economic concern in crops such as citrus, tomato, passion fruit, tea, and blueberry.
Collapse
Affiliation(s)
| | - Gabriella Dias Arena
- Instituto Biológico, URL Biologia Molecular Aplicada, São Paulo, Brazil; ,
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Aline Daniele Tassi
- Instituto Biológico, URL Biologia Molecular Aplicada, São Paulo, Brazil; ,
- Tropical Research and Education Center, University of Florida, Homestead, Florida, USA
| | - Camila Chabi-Jesus
- Instituto Biológico, URL Biologia Molecular Aplicada, São Paulo, Brazil; ,
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Elliot Watanabe Kitajima
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Juliana Freitas-Astúa
- Instituto Biológico, URL Biologia Molecular Aplicada, São Paulo, Brazil; ,
- Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia, Brazil
| |
Collapse
|
7
|
Arboviruses and symbiotic viruses cooperatively hijack insect sperm-specific proteins for paternal transmission. Nat Commun 2023; 14:1289. [PMID: 36894574 PMCID: PMC9998617 DOI: 10.1038/s41467-023-36993-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Arboviruses and symbiotic viruses can be paternally transmitted by male insects to their offspring for long-term viral persistence in nature, but the mechanism remains largely unknown. Here, we identify the sperm-specific serpin protein HongrES1 of leafhopper Recilia dorsalis as a mediator of paternal transmission of the reovirus Rice gall dwarf virus (RGDV) and a previously undescribed symbiotic virus of the Virgaviridae family, Recilia dorsalis filamentous virus (RdFV). We show that HongrES1 mediates the direct binding of virions to leafhopper sperm surfaces and subsequent paternal transmission via interaction with both viral capsid proteins. Direct interaction of viral capsid proteins mediates simultaneously invasion of two viruses into male reproductive organs. Moreover, arbovirus activates HongrES1 expression to suppress the conversion of prophenoloxidase to active phenoloxidase, potentially producing a mild antiviral melanization defense. Paternal virus transmission scarcely affects offspring fitness. These findings provide insights into how different viruses cooperatively hijack insect sperm-specific proteins for paternal transmission without disturbing sperm functions.
Collapse
|
8
|
Wang X, Larrea-Sarmiento A, Olmedo-Velarde A, Kong A, Borth W, Suzuki JY, Wall MM, Melzer M, Hu J. First detection and complete genome sequence of a new tobamovirus naturally infecting Hibiscus rosa-sinensis in Hawaii. Arch Virol 2023; 168:40. [PMID: 36609629 DOI: 10.1007/s00705-022-05634-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/11/2022] [Indexed: 01/09/2023]
Abstract
High-throughput sequencing was used to analyze Hibiscus rosa-sinensis (family Malvaceae) plants with virus-like symptoms in Hawaii. Bioinformatic and phylogenetic analysis revealed the presence of two tobamoviruses, hibiscus latent Fort Pierce virus (HLFPV) and a new tobamovirus with the proposed name "hibiscus latent Hawaii virus" (HLHV). This is the first report of the complete sequence, genome organization, and phylogenetic characterization of a tobamovirus infecting hibiscus in Hawaii. RT-PCR with virus-specific primers and Sanger sequencing further confirmed the presence of these viruses. Inoculation experiments showed that HLFPV could be mechanically transmitted to Nicotiana benthamiana and N. tabacum, while HLHV could only be mechanically transmitted to N. benthamiana.
Collapse
Affiliation(s)
- Xupeng Wang
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - Adriana Larrea-Sarmiento
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - Alejandro Olmedo-Velarde
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - Alexandra Kong
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - Wayne Borth
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - Jon Y Suzuki
- United States Department of Agriculture, Agricultural Research Service, U.S. Pacific Basin Agricultural Research Center, Hilo, HI, 96720, USA
| | - Marisa M Wall
- United States Department of Agriculture, Agricultural Research Service, U.S. Pacific Basin Agricultural Research Center, Hilo, HI, 96720, USA
| | - Michael Melzer
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, 96822, USA
| | - John Hu
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, 96822, USA.
| |
Collapse
|
9
|
Wang X, Larrea-Sarmiento AE, Olmedo-Velarde A, Kong A, Borth W, Suzuki JY, Wall MM, Melzer MJ, Hu J. First Detection and Genome Characterization of a New RNA Virus, Hibiscus Betacarmovirus, and a New DNA Virus, Hibiscus Soymovirus, Naturally Infecting Hibiscus spp. in Hawaii. Viruses 2022; 15:90. [PMID: 36680129 PMCID: PMC9865081 DOI: 10.3390/v15010090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
Hibiscus (Hibiscus spp., family Malvaceae) leaves exhibiting symptoms of mosaic, ringspot, and chlorotic spots were collected in 2020 on Oahu, HI. High-throughput sequencing analysis was conducted on ribosomal RNA-depleted composite RNA samples extracted from symptomatic leaves. About 77 million paired-end reads and 161,970 contigs were generated after quality control, trimming, and de novo assembly. Contig annotation with BLASTX/BLASTN searches revealed a sequence (contig 1) resembling the RNA virus, hibiscus chlorotic ringspot virus (genus Betacarmovirus), and one (contig 2) resembling the DNA virus, peanut chlorotic streak virus (genus Soymovirus). Further bioinformatic analyses of the complete viral genome sequences indicated that these viruses, with proposed names of hibiscus betacarmovirus and hibiscus soymovirus, putatively represent new species in the genera Betacarmovirus and Soymovirus, respectively. RT-PCR using specific primers, designed based on the retrieved contigs, coupled with Sanger sequencing, further confirmed the presence of these viruses. An additional 54 hibiscus leaf samples from other locations on Oahu were examined to determine the incidence and distribution of these viruses.
Collapse
Affiliation(s)
- Xupeng Wang
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822, USA
| | | | - Alejandro Olmedo-Velarde
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822, USA
| | - Alexandra Kong
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822, USA
| | - Wayne Borth
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822, USA
| | - Jon Y Suzuki
- United States Department of Agriculture Agricultural Research Service, U.S. Pacific Basin Agricultural Research Center, Hilo, HI 96720, USA
| | - Marisa M Wall
- United States Department of Agriculture Agricultural Research Service, U.S. Pacific Basin Agricultural Research Center, Hilo, HI 96720, USA
| | - Michael J Melzer
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822, USA
| | - John Hu
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822, USA
| |
Collapse
|
10
|
Roy A, Guillermo LM, Nunziata S, Padmanabhan C, Rivera Y, Brlansky RH, Hartung J. First report of Passion fruit green spot virus in yellow Passion fruit (Passiflora edulis f. flavicarpa) in Casanare, Colombia. PLANT DISEASE 2022; 107:2270. [PMID: 36471457 DOI: 10.1094/pdis-09-22-2267-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Passiflora edulis, commonly known as passion fruit, is a vine species of passionflower native to South America. In Colombia, yellow passion fruit (P. edulis f. flavicarpa) is the most important species in terms of net production and local consumption. Recently two brevipalpus transmitted cileviruses, (i) passion fruit green spot virus (PfGSV) and (ii) hibiscus strain of citrus leprosis virus C2 (CiLV-C2H) were detected in passion fruit in Brazil and Hawaii, respectively (Ramos-González et al., 2020, Olmedo-Velarde et al., 2022). CiLV-C2H infects both citrus and hibiscus in Colombia (Roy et al., 2015, 2018) but there was no report of PfGSV elsewhere apart from Brazil and Paraguay (Costa-Rodrigues et al., 2022). Apart from emerging begomovirus diseases, five major viruses are known to infect passion fruit in Colombia: soybean mosaic virus (SMV), cowpea aphid-borne mosaic virus, passion fruit yellow mosaic virus, cucumber mosaic virus, and a tentative Gulupa bacilliform badnavirus A (Cardona et al., 2022). Current findings of CiLV-C2H in passion fruit and PfGSV in hibiscus motivated us to investigate the possibilities of cilevirus infection in passion fruit in Colombia. During surveys, along with healthy yellow passion fruit leaves, five symptomatic plant samples from Meta and three from Casanare were collected before sent to the Molecular Plant Pathology Laboratory at Beltsville, MD under APHIS permit. Passion fruit samples from Meta showed leaf mottling, rugose mosaic, and leaf distortion, whereas leaf variegation, chlorotic spots, yellowing, green spots in senescent leaves and green vein banding were observed in the Casanare samples (Supp. Fig. 1). Total RNA was extracted using RNeasy Plant Mini Kit (Qiagen, USA). To know the potential cilevirus infection in these samples, three PfGSV specific (Ramos-González et al. 2020) and a CiLV-C2 generic primer pairs (Olmedo-Velarde et al. 2021) were used in the RT-PCR assays. All five passion fruit samples from Meta failed to produce either CiLV-C2 or CiLV-C2H or PfGSV amplicon whereas all three Casanare samples successfully amplified 321, 244 and 299 nts of PfGSV-RNA1 and -RNA2 amplicons using C13F/C13R, C6F/C6R and C8F/C8R primers, respectively. Bi-directional amplicon sequencing followed by BlastN analysis revealed ≥99% nt identity with the PfGSV-RNA1 (MK804173) and -RNA2 (MK804174) genome sequences. An optimized ribo-depleted library preparation protocol was utilized to prepare two cDNA libraries using the RNA extracts of a PfGSV suspected positive (Casanare) and a negative (Meta) samples (Chellappan et al., 2022). HTS libraries of Casanare and Meta samples resulted in 22.7 to 29.5 million raw reads, respectively. After adapter trimming and filtering, clean reads were mapped to the Arabidopsis thaliana reference genome and unmapped reads were de novo assembled (Chellappan et al., 2022). BlastN analysis from the assembled contigs identified 1-3 contigs corresponding to PfGSV-RNA1 and -RNA2, respectively, from Casanare sample whereas 3 contigs of SMV were identified in Meta passion fruit sample. No other virus sequence was obtained from either of the libraries. Assembled contigs covered 99.33% of the RNA1 and 94.42% of the RNA2 genome, with read depths of 64,474 and 119,549, respectively. Meta sample contigs (OP564897) covered >99% of the SMV genome, which shared >99% nt identity with the Colombian SMV isolates (KY249378, MW655827). Both RNA-1 (OP564895) and -2 (OP564896) segments of the Casanare isolate shared 99% nt identity with PfGSV isolate (MK804173-74). Our discovery identified PfGSV in Colombia, for the first-time outside Brazil and Paraguay. The findings of PfGSV in yellow passion fruit increases the potential threat and possibility of PfGSV movement via Brevipalpus sp. from passion fruit to other hosts.
Collapse
Affiliation(s)
- Avijit Roy
- USDA Agricultural Research Service, 17123, Molecular Plant Pathology Laboratory, Building 004, Room 117, BARC-West, 10300 Baltimore Avenue, Washington, District of Columbia, United States, 20250;
| | - Leon M Guillermo
- AGROSAVIA, 70126, Centro de Investigación La Libertad. Km.17 vía Pto. Lopez. Villavicencio, Bogota, Meta, Colombia;
| | - Schyler Nunziata
- USDA APHIS PPQ, Science and Technology, Plant Pathogen Confirmatory Diagnostics Laboratory, Laurel, Maryland, United States;
| | - Chellappan Padmanabhan
- USDA APHIS , PPCDL, USDA APHIS PPQ, Science and Technology, Bldg 580, BARC-East,, 9901 Powder Mill Road, Laurel, Maryland, United States, 20708;
| | - Yazmin Rivera
- USDA, Animal Plant Health Inspection Service; Plant Protection and Quarantine, Science and Technology, Plant Pathogen Confirmatory Diagnostics Laboratory, Plant Pathogen Confirmatory Diagnostics Laboratory, 9901 Powder Mill Rd, Laurel, Maryland, United States, 20705;
| | - Ronald H Brlansky
- University of Florida Citrus Research and Education Center, 57513, Department of Plant Pathology, Lake Alfred, Florida, United States;
| | - John Hartung
- USDA-ARS BARC, 57604, Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States;
| |
Collapse
|
11
|
Solovyev AG, Morozov SY. Uncovering Plant Virus Species Forming Novel Provisional Taxonomic Units Related to the Family Benyviridae. Viruses 2022; 14:v14122680. [PMID: 36560684 PMCID: PMC9781952 DOI: 10.3390/v14122680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Based on analyses of recent open-source data, this paper describes novel horizons in the diversity and taxonomy of beny-like viruses infecting hosts of the plant kingdom (Plantae or Archaeplastida). First, our data expand the known host range of the family Benyviridae to include red algae. Second, our phylogenetic analysis suggests that the evolution of this virus family may have involved cross-kingdom host change events and gene recombination/exchanges between distant taxa. Third, the identification of gene blocks encoding known movement proteins in beny-like RNA viruses infecting non-vascular plants confirms other evidence that plant virus genomic RNAs may have acquired movement proteins simultaneously or even prior to the evolutionary emergence of the plant vascular system. Fourth, novel data on plant virus diversity highlight that molecular evolution gave rise to numerous provisional species of land-plant-infecting viruses, which encode no known potential movement genetic systems.
Collapse
Affiliation(s)
- Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
- All Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-9393198
| |
Collapse
|
12
|
Examination of the Virome of Taro Plants Affected by a Lethal Disease, the Alomae-Bobone Virus Complex, in Papua New Guinea. Viruses 2022; 14:v14071410. [PMID: 35891390 PMCID: PMC9320088 DOI: 10.3390/v14071410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Alomae-bobone virus complex (ABVC) is a lethal but still understudied disease that is limited to the Solomon Islands and Papua New Guinea. The only virus clearly associated to ABVC is Colocasia bobone disease-associated virus (CBDaV). Taro (Colocasia esculenta) plants with and without symptoms of ABVC disease were sampled from two locations in Papua New Guinea and examined for viruses using high-throughput sequencing (HTS). Similar to previous reports, isolates of CBDaV were present only in symptomatic plants, further supporting its role in the disease. The only other viruses consistently present in symptomatic plants were badnaviruses: taro bacilliform virus (TaBV) and/or taro bacilliform CH virus (TaBCHV). If ABVC requires co-infection by multiple viruses, CBDaV and badnavirus infection appears to be the most likely combination. The complete genomes of two isolates of CBDaV and TaBCHV, and single isolates of TaBV and dasheen mosaic virus, were obtained in this study, furthering our knowledge of the genetic diversity of these relatively understudied taro viruses. HTS data also provided evidence for an agent similar to umbra-like viruses that we are tentatively designating it as Colocasia umbra-like virus (CULV).
Collapse
|
13
|
Tassi AD, Ramos-González PL, Sinico TE, Kitajima EW, Freitas-Astúa J. Circulative Transmission of Cileviruses in Brevipalpus Mites May Involve the Paracellular Movement of Virions. Front Microbiol 2022; 13:836743. [PMID: 35464977 PMCID: PMC9019602 DOI: 10.3389/fmicb.2022.836743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Plant viruses transmitted by mites of the genus Brevipalpus are members of the genera Cilevirus, family Kitaviridae, or Dichorhavirus, family Rhabdoviridae. They produce non-systemic infections that typically display necrotic and/or chlorotic lesions around the inoculation loci. The cilevirus citrus leprosis virus C (CiLV-C) causes citrus leprosis, rated as one of the most destructive diseases affecting this crop in the Americas. CiLV-C is vectored in a persistent manner by the flat mite Brevipalpus yothersi. Upon the ingestion of viral particles with the content of the infected plant cell, virions must pass through the midgut epithelium and the anterior podocephalic gland of the mites. Following the duct from this gland, virions reach the salivary canal before their inoculation into a new plant cell through the stylet canal. It is still unclear whether CiLV-C multiplies in mite cells and what mechanisms contribute to its movement through mite tissues. In this study, based on direct observation of histological sections from viruliferous mites using the transmission electron microscope, we posit the hypothesis of the paracellular movement of CiLV-C in mites which may involve the manipulation of septate junctions. We detail the presence of viral particles aligned in the intercellular spaces between cells and the gastrovascular system of Brevipalpus mites. Accordingly, we propose putative genes that could control either active or passive paracellular circulation of viral particles inside the mites.
Collapse
Affiliation(s)
- Aline Daniele Tassi
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, São Paulo, Brazil.,Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, Brazil
| | | | - Thais Elise Sinico
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, São Paulo, Brazil.,Centro de Citricultura Sylvio Moreira, Cordeirópolis, Brazil
| | - Elliot Watanabe Kitajima
- Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, Brazil
| | - Juliana Freitas-Astúa
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, São Paulo, Brazil.,Embrapa Mandioca e Fruticultura, Cruz das Almas, Brazil
| |
Collapse
|
14
|
Ramos-González PL, Chabi-Jesus C, Tassi AD, Calegario RF, Harakava R, Nome CF, Kitajima EW, Freitas-Astua J. A Novel Lineage of Cile-Like Viruses Discloses the Phylogenetic Continuum Across the Family Kitaviridae. Front Microbiol 2022; 13:836076. [PMID: 35418952 PMCID: PMC8996159 DOI: 10.3389/fmicb.2022.836076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
An increasing number of plant species have been recognized or considered likely reservoirs of viruses transmitted by Brevipalpus mites. A tiny fraction of these viruses, primarily those causing severe economic burden to prominent crops, have been fully characterized. In this study, based on high-throughput sequencing, transmission electron microscopy analyses of virions in plant-infected tissues, viral transmission experiments, and the morphoanatomical identification of the involved Brevipalpus mites, we describe molecular and biological features of viruses representing three new tentative species of the family Kitaviridae. The genomes of Solanum violifolium ringspot virus (SvRSV, previously partially characterized), Ligustrum chlorotic spot virus (LigCSV), and Ligustrum leprosis virus (LigLV) have five open reading frames (ORFs) > 500 nts, two distributed in RNA1 and three in RNA2. RNA1 of these three viruses display the same genomic organization found in RNA1 of typical cileviruses, while their RNA2 are shorter, possessing only orthologs of genes p61, p32, and p24. LigCSV and LigLV are more closely related to each other than to SvRSV, but the identities between their genomic RNAs were lower than 70%. In gene-by-gene comparisons, ORFs from LigCSV and LigLV had the highest sequence identity values (nt sequences: 70-76% and deduced amino acid sequences: 74-83%). The next higher identity values were with ORFs from typical cileviruses, with values below 66%. Virions of LigLV (≈ 40 nm × 55 nm) and LigCSV (≈ 54 nm × 66 nm) appear almost spherical, contrasting with the bacilliform shape of SvRSV virions (≈ 47 nm × 101 nm). Mites collected from the virus-infected plants were identified as Brevipalpus papayensis, B. tucuman, and B. obovatus. Viruliferous B. papayensis mites successfully transmitted LigCSV to Arabidopsis thaliana. SvRSV, LigCSV, and LigLV seem to represent novel sub-lineages of kitaviruses that descent on parallel evolutionary branches from a common ancestor shared with the tentative cile-like virus hibiscus yellow blotch virus and typical cileviruses. Biological and molecular data, notably, the phylogenetic reconstruction based on the RdRp proteins in which strong support for monophyly of the family Kitaviridae is observed, mark an advance in the understanding of kitavirids.
Collapse
Affiliation(s)
- Pedro L. Ramos-González
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico de São Paulo, São Paulo, Brazil
| | - Camila Chabi-Jesus
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico de São Paulo, São Paulo, Brazil
- Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, Brazil
| | - Aline D. Tassi
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico de São Paulo, São Paulo, Brazil
- Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, Brazil
| | - Renata Faier Calegario
- Departamento de Fitotecnia e Fitossanidade, Universidade Federal do Paraná, Curitiba, Brazil
| | - Ricardo Harakava
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico de São Paulo, São Paulo, Brazil
| | - Claudia F. Nome
- Instituto de Patologia Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (INTA), Córdoba, Argentina
| | - Elliot W. Kitajima
- Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, Brazil
| | | |
Collapse
|
15
|
Olmedo Velarde A, Roy A, Larrea-Sarmiento A, Wang X, Padmanabhan C, Nunziata S, Nakhla MK, Hu J, Melzer M. First report of the hibiscus strain of citrus leprosis virus C2 infecting passionfruit (Passiflora edulis). PLANT DISEASE 2022; 106:2539. [PMID: 35253490 DOI: 10.1094/pdis-10-21-2314-pdn] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In Hawaii, passionfruit (Passiflora edulis; Passifloraceae) is grown primarily in residential properties and community gardens (CG). In 2019, passionfruit plants displaying chlorotic spots on young leaves, and green spots in senescing leaves were observed at two CG in Honolulu. Symptoms resembled those of passionfruit green spot virus (PfGSV) infection in Passiflora spp. (Ramos-González et al. 2020) and of the hibiscus strain of citrus leprosis virus C2 (CiLV-C2H) infection in hibiscus in Hawaii (Melzer et al. 2013). Both viruses belong to the genus Cilevirus, family Kitaviridae. Total RNA was extracted from two sample pools comprised of 40 symptomatic leaves collected from both the CG following a CTAB-based procedure (Li et al. 2008). To identify the virus associated with the P. edulis infection, reverse transcription (RT)-polymerase chain reaction (PCR) was performed using CiLV-C2 (Olmedo-Velarde et al. 2021) and PfGSV specific primers (Ramos-González et al. 2020). RT-PCR assay amplified the CiLV-C2 amplicon but failed to produce the PfGSV amplicon from infected leaves. Amplicon sequencing followed by a BLASTn search showed the nucleotide sequence had >99% identity with the CiLV-C2H-RNA1 (KC626783). A ribo-depleted RNA library created using the TruSeq Stranded Total RNA Library Prep kit (Illumina) underwent high throughput sequencing (HTS) on a NextSeq550 Illumina platform (2x75 cycles). The 6.5 million raw reads obtained were trimmed, filtered, and de novo assembled using Metaviral SPAdes v. 3.15.02 (Antipov et al. 2020). The resulting contigs were searched against an in-house database generated from GenBank virus and viroid sequences using BLASTn. This identified 12 and 3 contigs corresponding to CiLV-C2H and watermelon mosaic virus, respectively, with the latter being previously reported in passionfruit (Watanabe et al. 2016). RNA1 contigs covered 80.17% of the CiLV-C2H genome, whereas RNA2 contigs covered 94.5% with an average coverage depth of 31.660 and 57.121, respectively. To obtain the near complete genome of CiLV-C2H, gaps from the assembled HTS data were filled by overlapping RT-PCR followed by Sanger sequencing. RNA1 (8,536 nt, Acc. No. MW413437) and RNA2 (4,878 nt, MW413438) genome sequences shared 99.2% and 97.0% identity with CiLV-C2H-RNA1 (KC626783) and -RNA2 (KC626784). To further confirm the presence of CiLV-C2H in symptomatic P. edulis plants, 40 symptomatic leaf samples were individually tested by RT-PCR, and 30 samples were positive. Brevipalpus mites collected from CiLV-C2H-positive P. edulis leaves were transferred to common bean (Phaseolus vulgaris) seedlings (Garita et al. 2013). At 15-30 days post-transfer, RNA extracted from lesions observed in recipient plants tested positive for CiLV-C2H by RT-PCR. Total RNA from individual Brevipalpus mites was isolated, and cDNA was prepared to tentatively identify the mite species involved in CiLV-C2H transmission in passionfruit (Druciarek et al 2019, Olmedo-Velarde et al. 2021). CiLV-C2H was detected in individual mites, and the 28S ribosomal mite RNA sequence (MZ478051) shared 99-100% nucleotide identity with B. yothersi (MK293678 and MT812697), a vector of CiLV-C2 (Roy et al. 2013). CiLV-C2 currently has a host range limited to the families Malvaceae, Araceae, and Rutaceae (Roy et al. 2015). CiLV-C2H infects hibiscus alone and citrus in mixed infection with CiLV-C2 (Roy et al; 2018) which is responsible for causing citrus leprosis disease. Detection of CiLV-C2H in passionfruit expands the number of host families of CiLV-C2H.
Collapse
Affiliation(s)
- Alejandro Olmedo Velarde
- University of Hawaii System, 3939, Plant & Environmental Protection Sciences, 3190 Maile Way, St John 315, Honolulu, Hawaii, United States, 96822;
| | - Avijit Roy
- USDA Agricultural Research Service, 17123, Molecular Plant Pathology Laboratory, Building 004, Room 117, BARC-West, 10300 Baltimore Avenue, Washington, District of Columbia, United States, 20250;
| | - Adriana Larrea-Sarmiento
- University of Hawai'i at Manoa, 3949, PEPS, 3190 Maile Way, St John 310, Honolulu, Honolulu, Hawaii, United States, 96822-2217;
| | - Xupeng Wang
- University of Hawai'i at Manoa, 3949, Department of Plant and Environmental Protection Sciences, 3190 Maile Way, Room 310, Honolulu, Hawaii, United States, 96822
- University of Hawai'i at Manoa, 3949, Department of Plant and Environmental Protection Sciences, 3190 Maile Way, Room 310, Honolulu, Hawaii, United States, 96822;
| | - Chellappan Padmanabhan
- PPQ, CPHST, National Plant Germplasm and Biotechnology Laboratory, Laurel, Maryland, United States;
| | - Schyler Nunziata
- PPQ, CPHST, National Plant Germplasm and Biotechnology Laboratory, Laurel, Maryland, United States;
| | - Mark K Nakhla
- PPQ, CPHST, National Plant Germplasm and Biotechnology Laboratory, BARC-East, Bldg-580, Powder Mill Rd, Beltsville, Maryland, United States, 20705;
| | - John Hu
- 3190 Maile WayRm 310C310CHonolulu, Hawaii, United States, 96822
- United States;
| | - Michael Melzer
- University of Hawaii, Plant and Environmental Protection Sciences, 3190 Maile Way, St. John 310, Honolulu, Hawaii, United States, 96822;
| |
Collapse
|
16
|
Ramos-González PL, Pons T, Chabi-Jesus C, Arena GD, Freitas-Astua J. Poorly Conserved P15 Proteins of Cileviruses Retain Elements of Common Ancestry and Putative Functionality: A Theoretical Assessment on the Evolution of Cilevirus Genomes. FRONTIERS IN PLANT SCIENCE 2021; 12:771983. [PMID: 34804105 PMCID: PMC8602818 DOI: 10.3389/fpls.2021.771983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
The genus Cilevirus groups enveloped single-stranded (+) RNA virus members of the family Kitaviridae, order Martellivirales. Proteins P15, scarcely conserved polypeptides encoded by cileviruses, have no apparent homologs in public databases. Accordingly, the open reading frames (ORFs) p15, located at the 5'-end of the viral RNA2 molecules, are considered orphan genes (ORFans). In this study, we have delved into ORFs p15 and the relatively poorly understood biochemical properties of the proteins P15 to posit their importance for viruses across the genus and theorize on their origin. We detected that the ORFs p15 are under purifying selection and that, in some viral strains, the use of synonymous codons is biased, which might be a sign of adaptation to their plant hosts. Despite the high amino acid sequence divergence, proteins P15 show the conserved motif [FY]-L-x(3)-[FL]-H-x-x-[LIV]-S-C-x-C-x(2)-C-x-G-x-C, which occurs exclusively in members of this protein family. Proteins P15 also show a common predicted 3D structure that resembles the helical scaffold of the protein ORF49 encoded by radinoviruses and the phosphoprotein C-terminal domain of mononegavirids. Based on the 3D structural similarities of P15, we suggest elements of common ancestry, conserved functionality, and relevant amino acid residues. We conclude by postulating a plausible evolutionary trajectory of ORFans p15 and the 5'-end of the RNA2 of cileviruses considering both protein fold superpositions and comparative genomic analyses with the closest kitaviruses, negeviruses, nege/kita-like viruses, and unrelated viruses that share the ecological niches of cileviruses.
Collapse
Affiliation(s)
- Pedro L. Ramos-González
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico de São Paulo, São Paulo, Brazil
| | - Tirso Pons
- National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Camila Chabi-Jesus
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico de São Paulo, São Paulo, Brazil
- Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, Brazil
| | - Gabriella Dias Arena
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico de São Paulo, São Paulo, Brazil
| | - Juliana Freitas-Astua
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico de São Paulo, São Paulo, Brazil
- Embrapa Mandioca e Fruticultura, Cruz das Almas, Brazil
| |
Collapse
|
17
|
Druciarek T, Lewandowski M, Tzanetakis I. Molecular phylogeny of Phyllocoptes associated with roses discloses the presence of a new species. INFECTION GENETICS AND EVOLUTION 2021; 95:105051. [PMID: 34450295 DOI: 10.1016/j.meegid.2021.105051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 11/17/2022]
Abstract
There are few plant maladies as devastating as rose rosette, a disease caused by an eriophyoid -transmitted virus. Rosette annihilates roses across North America, and to date, there is a single verified vector of the virus, Phyllocoptes fructiphilus Keifer. In direct contrast to the importance of rose for the ornamental industry there is limited knowledge on the eriophyoids that inhabit roses in North America and even less information on their vectoring capacities. This study dissects the genetic diversity of the eriophyoid fauna in rosette-affected hotspots and provides evidence of the existence of an undescribed species named Phyllocoptes arcani sp. nov., that could potentially be a second vector of the rosette virus.
Collapse
Affiliation(s)
- Tobiasz Druciarek
- Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System Fayetteville, AR 72701, United States.
| | - Mariusz Lewandowski
- Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Ioannis Tzanetakis
- Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System Fayetteville, AR 72701, United States.
| |
Collapse
|