1
|
Sumerta IN, Ruan X, Howell K. The forgotten wine: Understanding palm wine fermentation and composition. Int J Food Microbiol 2025; 429:111022. [PMID: 39689568 DOI: 10.1016/j.ijfoodmicro.2024.111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Palm wine is an alcoholic beverage that has existed for centuries and has important economic and socio-culture values in many tropical and sub-tropical countries. Lesser known than other types of wines, palm wine is made by spontaneous fermentation of palm sap by naturally occurring microbial communities. The palm sap ecosystem has unique microbial composition and diversity, which determines the composition of the eventual wine and is likely affected by geographical distinctiveness. While these features are well understood in grape and rice wine, these features have not been understood in palm wine. Here, we gather information of microbial communities and metabolite profiles from published studies, covering a wide range of methodologies and regions to better understand the causal links between the principal microbial species and major metabolites of palm wine. We assessed palm wine quality across production regions and local practices to provide general characteristics of palm wine and identify specific regional information. These will provide better understandings to the function of microbial communities and metabolite diversity, the contribution of regional variations and to ensure product quality in this unique, yet overlooked, fermented beverage.
Collapse
Affiliation(s)
- I Nyoman Sumerta
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Victoria 3010, Australia; National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| | - Xinwei Ruan
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Victoria 3010, Australia
| | - Kate Howell
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
2
|
Chen Y, Ye S, Shi J, Wang H, Deng G, Wang G, Wang S, Yuan Q, Yang L, Mou T. Functional evaluation of pure natural edible Ferment: protective function on ulcerative colitis. Front Microbiol 2024; 15:1367630. [PMID: 38952444 PMCID: PMC11215050 DOI: 10.3389/fmicb.2024.1367630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Purpose To investigate the therapeutic efficiency of a novel drink termed "Ferment" in cases of ulcerative colitis (UC) and its influence on the gut microbiota. Method In this study, we developed a complex of mixed fruit juice and lactic acid bacteria referred to as Ferment. Ferment was fed to mice for 35 days, before inducing UC with Dextran Sulfate Sodium Salt. We subsequently investigated the gut microbiome composition using 16S rRNA sequencing. Result After Ferment treatment, mouse body weight increased, and animals displayed less diarrhea, reduced frequency of bloody stools, and reduced inflammation in the colon. Beneficial bacteria belonging to Ileibacterium, Akkermansia, and Prevotellacea were enriched in the gut after Ferment treatment, while detrimental organisms including Erysipelatoclostridium, Dubosiella, and Alistipes were reduced. Conclusion These data place Ferment as a promising dietary candidate for enhancing immunity and protecting against UC.
Collapse
Affiliation(s)
- Yanjun Chen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shengzhi Ye
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaolong Shi
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Wang
- First Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Guangxu Deng
- Department of Gastrointestinal and Anorectal, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | | | - Shijie Wang
- College of Foods Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
- Junlebao Dairy Group Co., Ltd., Shijiazhuang, China
| | - Qingbin Yuan
- Junlebao Dairy Group Co., Ltd., Shijiazhuang, China
| | - Lunan Yang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingyu Mou
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Wiboonsirikul J, Ongkunaruk P, Poonpan P. Determining key factors affecting coconut sap quality after harvesting. Heliyon 2024; 10:e29002. [PMID: 38628742 PMCID: PMC11019175 DOI: 10.1016/j.heliyon.2024.e29002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/03/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
The production of coconut sap beverages faces a challenge with the quality of the incoming coconut sap sourced from farmers. The clarification of pivotal factors influencing the quality of coconut sap after harvesting is of paramount importance for fostering mutual benefit between the involved parties. This research focuses on assessing the quality and degradation of coconut sap during the post-harvest stage. It addresses the shortcomings in evaluating coconut sap quality and improper pick-up conditions. To improve these processes, various experiments were designed, including 1) preliminary experiments that explored microbial count, pH, and soluble solids in harvested coconut sap at varying intervals, and 2) the L9 Taguchi Orthogonal Array method. These approaches identify the optimal levels of factors such as cleaning method, storage temperature, and preservative type. By reducing the number of experiments, costs and time were minimized, 3) the 23 factorial design was implemented, reducing the levels of each factor while measuring coconut sap quality based on pH and total soluble solids (representing sweetness) at different post-harvest intervals. The results from the Taguchi method were then used to design the factorial method experiment. The analysis revealed crucial factors influencing coconut sap quality at the 10-h mark. Storage and transportation temperatures, along with the type of preservative, significantly impacted the pH value. However, the washing method and preservative type showed no statistically significant effect on Total Soluble Solids (TSS) value (p > 0.05). Recommendations include using tap water for container cleaning, opting for Payom wood as a preservative, and adhering to cold chain practices for transportation exceeding 4 h, with temperatures maintained below or equal to 10 °C . Swift sap collection within 4 h post-harvest, coupled with stringent temperature control during transportation (not exceeding 10 °C ), is advised to ensure optimal quality. Integrating pH with TSS values enhances comprehensive quality assessment, aligning with established best practices in coconut sap handling.
Collapse
Affiliation(s)
- Jintana Wiboonsirikul
- Division of Food Science and Technology, Faculty of Agricultural Technology, Phetchaburi, 76000, Thailand
| | - Pornthipa Ongkunaruk
- Department of Industrial Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand
| | - Piyarat Poonpan
- Department of Agro-Industrial Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
4
|
Carlini NA, Romanowski S, Rabalais EN, Kistler BM, Campbell MS, Krishnakumar IM, Harber MP, Fleenor BS. Coconut sugar derived from coconut inflorescence sap lowers systolic blood pressure and arterial stiffness in middle-aged and older adults: a pilot study. J Appl Physiol (1985) 2023; 134:508-514. [PMID: 36656985 DOI: 10.1152/japplphysiol.00394.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nutraceutical-based interventions hold promise to reduce blood pressure (BP) and arterial stiffness, which are two cardiovascular disease (CVD) risk factors. However, the effects of coconut sap powder (CSP), an Asian sweetener and novel nutraceutical, on BP and arterial stiffness in middle-aged and older adults (MA/O, ≥45 yr) has yet to be established. We hypothesized CSP will decrease BP and arterial stiffness in MA/O adults. In a double-blind, randomized, placebo-controlled study design, 19 (age 55.3 ± 2.1 yr) MA/O adults completed measures of brachial and carotid BP, and arterial stiffness [carotid-femoral pulse wave velocity (cfPWV), common carotid artery (CCA) β-stiffness, compliance, distensibility, and Young's and Peterson's Elastic moduli] before and after 8 wk of CSP (1.5 g/day) or placebo (1.5 g/day). A two-way repeated-measures analysis of variance was used to compare group mean differences. Compared with placebo, CSP lowered brachial systolic BP (SBP) (CSP pre: 117.4 ± 2.9 vs. post: 109.0 ± 2.4 mmHg, P < 0.05), but not carotid SBP (P = 0.12). CSP also lowered Young's (CSP pre: 5,514.4 ± 1,115.4 vs. post: 3,690.6 ± 430.9 kPa) and Peterson's elastic moduli (CSP pre: 22.2 ± 4.4 vs. post: 19.2 ± 4.5 kPa) (P < 0.05, both). A trend for CSP to lower CCA β-stiffness (P = 0.06) and increase CCA compliance (P = 0.07) was also observed. Arterial stiffness assessed by cfPWV did not change (P > 0.05). No inflammatory or antioxidant biomarkers were affected by CSP. In summary, 8 wk of CSP lowers brachial SBP and CCA mechanical stiffness indicating a potential cardioprotective effect in MA/O adults.NEW & NOTEWORTHY Blood pressure (BP) and arterial stiffness are important predictors of cardiovascular health with aging. Nutraceuticals are an easy-to-implement lifestyle strategy demonstrating promise to effectively lower BP and arterial stiffness with aging and ultimately cardiovascular disease risk. We demonstrate that coconut sap powder (CSP), a traditional Asian sweetener, lowers brachial systolic BP and carotid artery mechanical stiffness in middle-aged and older (MA/O) adults. These findings provide initial evidence for the CSP-related cardioprotective effects in MA/O adults.
Collapse
Affiliation(s)
- Nicholas A Carlini
- Clinical Exercise Physiology, Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Spencer Romanowski
- Clinical Exercise Physiology, Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Emily N Rabalais
- Clinical Exercise Physiology, Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Brandon M Kistler
- Department of Nutrition and Health Science, Ball State University, Muncie, Indiana, United States
| | - Marilyn S Campbell
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky, United States
| | | | - Matthew P Harber
- Clinical Exercise Physiology, Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Bradley S Fleenor
- Clinical Exercise Physiology, Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| |
Collapse
|
5
|
Saraiva A, Carrascosa C, Ramos F, Raheem D, Lopes M, Raposo A. Coconut Sugar: Chemical Analysis and Nutritional Profile; Health Impacts; Safety and Quality Control; Food Industry Applications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3671. [PMID: 36834366 PMCID: PMC9964017 DOI: 10.3390/ijerph20043671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Consumers often wish to substitute refined sugar with alternative sweeteners, such as coconut sugar, given growing interest in healthy eating and the public's negative perception of excess sugar intake. Coconut sugar is a healthier, sweetener option than the majority of other sugars that are commercially available. Sap is collected from trees to be transported, stored, and evaporated during processing, which are labor- and resource-intensive operations. Consequently, the cost of production is higher than it is for cane sugar. Given its high nutritional value and low glycemic index, people are willing to pay higher prices for it. However, one barrier is ignorance of its health benefits. This review examines and deals in-depth with the most significant features of coconut sugar chemical analyses to focus on several analytical methodologies given the increasing demand for naturally derived sweeteners in the last 10 years. A deeper understanding of the quality control, safety, health effects, nutritional profile, and sustainability issues corresponding to coconut sugar is necessary to effectively implement them in the food industry.
Collapse
Affiliation(s)
- Ariana Saraiva
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain
| | - Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain
| | - Fernando Ramos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Dele Raheem
- Northern Institute for Environmental and Minority Law (NIEM), Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland
| | - Maria Lopes
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| |
Collapse
|
6
|
He NY, Chen LS, Sun AZ, Zhao Y, Yin SN, Guo FQ. A nitric oxide burst at the shoot apex triggers a heat-responsive pathway in Arabidopsis. NATURE PLANTS 2022; 8:434-450. [PMID: 35437002 DOI: 10.1038/s41477-022-01135-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
When confronted with heat stress, plants depend on the timely activation of cellular defences to survive by perceiving the rising temperature. However, how plants sense heat at the whole-plant level has remained unanswered. Here we demonstrate that shoot apical nitric oxide (NO) bursting under heat stress as a signal triggers cellular heat responses at the whole-plant level on the basis of our studies mainly using live-imaging of transgenic plants harbouring pHsfA2::LUC, micrografting, NO accumulation mutants and liquid chromatography-tandem mass spectrometry analysis in Arabidopsis. Furthermore, we validate that S-nitrosylation of the trihelix transcription factor GT-1 by S-nitrosoglutathione promotes its binding to NO-responsive elements in the HsfA2 promoter and that loss of function of GT-1 disrupts the activation of HsfA2 and heat tolerance, revealing that GT-1 is the long-sought mediator linking signal perception to the activation of cellular heat responses. These findings uncover a heat-responsive mechanism that determines the timing and execution of cellular heat responses at the whole-plant level.
Collapse
Affiliation(s)
- Ning-Yu He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li-Sha Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ai-Zhen Sun
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yao Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shui-Ning Yin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Fang-Qing Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|