1
|
Struck B, Wiersma SJ, Ortseifen V, Pühler A, Niehaus K. Comprehensive Proteome Profiling of a Xanthomonas campestris pv. Campestris B100 Culture Grown in Minimal Medium with a Specific Focus on Nutrient Consumption and Xanthan Biosynthesis. Proteomes 2024; 12:12. [PMID: 38651371 PMCID: PMC11036225 DOI: 10.3390/proteomes12020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Xanthan, a bacterial polysaccharide, is widespread in industrial applications, particularly as a food additive. However, little is known about the process of xanthan synthesis on the proteome level, even though Xanthomonas campestris is frequently used for xanthan fermentation. A label-free LC-MS/MS method was employed to study the protein changes during xanthan fermentation in minimal medium. According to the reference database, 2416 proteins were identified, representing 54.75 % of the proteome. The study examined changes in protein abundances concerning the growth phase and xanthan productivity. Throughout the experiment, changes in nitrate concentration appeared to affect the abundance of most proteins involved in nitrogen metabolism, except Gdh and GlnA. Proteins involved in sugar nucleotide metabolism stay unchanged across all growth phases. Apart from GumD, GumB, and GumC, the gum proteins showed no significant changes throughout the experiment. GumD, the first enzyme in the assembly of the xanthan-repeating unit, peaked during the early stationary phase but decreased during the late stationary phase. GumB and GumC, which are involved in exporting xanthan, increased significantly during the stationary phase. This study suggests that a potential bottleneck for xanthan productivity does not reside in the abundance of proteins directly involved in the synthesis pathways.
Collapse
Affiliation(s)
- Ben Struck
- Department of Biology, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany (S.J.W.)
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, D-33615 Bielefeld, Germany;
| | - Sanne Jitske Wiersma
- Department of Biology, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany (S.J.W.)
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, D-33615 Bielefeld, Germany;
| | - Vera Ortseifen
- Department of Biology, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany (S.J.W.)
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, D-33615 Bielefeld, Germany;
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, D-33615 Bielefeld, Germany;
| | - Karsten Niehaus
- Department of Biology, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany (S.J.W.)
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, D-33615 Bielefeld, Germany;
| |
Collapse
|
2
|
Li Q, Feng Y, Li J, Hai Y, Si L, Tan C, Peng J, Hu Z, Li Z, Li C, Hao D, Tang W. Multi-omics approaches to understand pathogenicity during potato early blight disease caused by Alternaria solani. Front Microbiol 2024; 15:1357579. [PMID: 38529180 PMCID: PMC10961351 DOI: 10.3389/fmicb.2024.1357579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/14/2024] [Indexed: 03/27/2024] Open
Abstract
Potato early blight (PEB), a foliar disease of potato during the growing period, caused by Alternaria sp., is common in major potato-producing areas worldwide. Effective agents to control this disease or completely resistant potato varieties are absent. Large-scale use of fungicides is limited due to possibility of increase in pathogen resistance and the requirements of ecological agriculture. In this study, we focused on the composition and infection characteristics of early blight pathogens in Yunnan Province and screened candidate pathogenesis-related pathways and genes. We isolated 85 strains of Alternaria sp. fungi from typical early blight spots in three potato-growing regions in Yunnan Province from 2018 to 2022, and identified 35 strains of Alternaria solani and 50 strains of Alternaria alternata by morphological characterization and ITS sequence comparison, which were identified as the main and conditional pathogens causing early blight in potato, respectively. Scanning electron microscope analysis confirmed only A. solani producing appressorium at 4 h after inoculation successfully infected the leaf cells. Via genome assembly and annotation, combine transcriptome and proteomic analysis, the following pathogenicity-related unit, transcription factors and metabolic pathway were identified: (1) cell wall-degrading enzymes, such as pectinase, keratinase, and cellulase; (2) genes and pathways related to conidia germination and pathogenicity, such as ubiquitination and peroxisomes; and (3) transcription factors, such as Zn-clus, C2H2, bZIP, and bHLH. These elements were responsible for PEB epidemic in Yunnan.
Collapse
Affiliation(s)
- Qing Li
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Yan Feng
- School of Economics and Management, Yunnan Normal University, Kunming, China
| | - Jianmei Li
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Yang Hai
- Yunnan YinMore Modern Agriculture Co., Ltd., Kunming, China
| | - Liping Si
- Yunnan YinMore Modern Agriculture Co., Ltd., Kunming, China
| | - Chen Tan
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Jing Peng
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Zuo Hu
- Zhaotong Academy of Agricultural Sciences, Zhaotong, China
| | - Zhou Li
- Zhaotong Academy of Agricultural Sciences, Zhaotong, China
| | - Canhui Li
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Dahai Hao
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Wei Tang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| |
Collapse
|
3
|
Wang Y, Wang Q, Chen L, Li B. The lysosome-phagosome pathway mediates immune regulatory mechanisms in Mesocentrotus nudus against Vibrio coralliilyticus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108864. [PMID: 37277051 DOI: 10.1016/j.fsi.2023.108864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Sea urchins are a popular model species for studying invertebrate diseases. The immune regulatory mechanisms of the sea urchin Mesocentrotus nudus during pathogenic infection are currently unknown. This study aimed to reveal the potential molecular mechanisms of M. nudus during resistance to Vibrio coralliilyticus infection by integrative transcriptomic and proteomic analyses. Here, we identified a total of 135,868 unigenes and 4,351 proteins in the four infection periods of 0 h, 20 h, 60 h and 100 h in M. nudus. In the I20, I60 and I100 infection comparison groups, 10,861, 15,201 and 8,809 differentially expressed genes (DEGs) and 2,188, 2,386 and 2,516 differentially expressed proteins (DEPs) were identified, respectively. We performed an integrated comparative analysis of the transcriptome and proteome throughout the infection phase and found very a low correlation between transcriptome and proteome changes. KEGG pathway analysis revealed that most upregulated DEGs and DEPs were involved in immune strategies. Notably, "lysosome" and "phagosome" activated throughout the infection process, could be considered the two most important enrichment pathways at the mRNA and protein levels. The significant increase in phagocytosis of infected M. nudus coelomocytes further demonstrated that the lysosome-phagosome pathway played an important immunological role in M. nudus resistance to pathogenic infection. Key gene expression profiles and protein‒protein interaction analysis revealed that cathepsin family and V-ATPase family genes might be key bridges in the lysosome-phagosome pathway. In addition, the expression patterns of key immune genes were verified using qRT‒PCR, and the different expression trends of candidate genes reflected, to some extent, the regulatory mechanism of immune homeostasis mediated by the lysosome-phagosome pathway in M. nudus against pathogenic infection. This work will provide new insights into the immune regulatory mechanisms of sea urchins under pathogenic stress and help identify key potential genes/proteins for sea urchin immune responses.
Collapse
Affiliation(s)
- Yanxia Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Science, Beijing, 10049, China
| | - Quanchao Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Linlin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Baoquan Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
4
|
Wang Q, Zhang L, Zhang Y, Chen H, Song J, Lyu M, Chen R, Zhang L. Comparative genomic analyses reveal genetic characteristics and pathogenic factors of Bacillus pumilus HM-7. Front Microbiol 2022; 13:1008648. [PMID: 36419435 PMCID: PMC9677121 DOI: 10.3389/fmicb.2022.1008648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
Bacillus pumilus plays an important role in industrial application and biocontrol activities, as well as causing humans and plants disease, leading to economic losses and biosafety concerns. However, until now, the pathogenesis and underlying mechanisms of B. pumilus strains remain unclear. In our previous study, one representative isolate of B. pumilus named HM-7 has been recovered and proved to be the causal agent of fruit rot on muskmelon (Cucumis melo). Herein, we present a complete and annotated genome sequence of HM-7 that contains 4,111 coding genes in a single 3,951,520 bp chromosome with 41.04% GC content. A total of 3,481 genes were functionally annotated with the GO, COG, and KEGG databases. Pan-core genome analysis of HM-7 and 20 representative B. pumilus strains, as well as six closely related Bacillus species, discovered 740 core genes and 15,205 genes in the pan-genome of 21 B. pumilus strains, in which 485 specific-genes were identified in HM-7 genome. The average nucleotide identity (ANI), and whole-genome-based phylogenetic analysis revealed that HM-7 was most closely related to the C4, GR8, MTCC-B6033, TUAT1 and SH-B11 strains, but evolutionarily distinct from other strains in B. pumilus. Collinearity analysis of the six similar B. pumilus strains showed high levels of synteny but also several divergent regions for each strains. In the HM-7 genome, we identified 484 genes in the carbohydrate-active enzymes (CAZyme) class, 650 genes encoding virulence factors, and 1,115 genes associated with pathogen-host interactions. Moreover, three HM-7-specific regions were determined, which contained 424 protein-coding genes. Further investigation of these genes showed that 19 pathogenesis-related genes were mainly associated with flagella formation and secretion of toxic products, which might be involved in the virulence of strain HM-7. Our results provided detailed genomic and taxonomic information for the HM-7 strain, and discovered its potential pathogenic mechanism, which lay a foundation for developing effective prevention and control strategies against this pathogen in the future.
Collapse
Affiliation(s)
- Qian Wang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei, China
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Lei Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yiju Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianghua Song
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Mingjie Lyu
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Rui Chen
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Lixin Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Lixin Zhang,
| |
Collapse
|
5
|
Sanya DRA, Syed-Ab-Rahman SF, Jia A, Onésime D, Kim KM, Ahohuendo BC, Rohr JR. A review of approaches to control bacterial leaf blight in rice. World J Microbiol Biotechnol 2022; 38:113. [PMID: 35578069 DOI: 10.1007/s11274-022-03298-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/29/2022] [Indexed: 01/16/2023]
Abstract
The Gram-negative bacteria Xanthomonas oryzae pv. oryzae, the causative agent of bacterial leaf blight (BLB), received attention for being an economically damaging pathogen of rice worldwide. This damage prompted efforts to better understand the molecular mechanisms governing BLB disease progression. This research revealed numerous virulence factors that are employed by this vascular pathogen to invade the host, outcompete host defence mechanisms, and cause disease. In this review, we emphasize the virulence factors and molecular mechanisms that X. oryzae pv. oryzae uses to impair host defences, recent insights into the cellular and molecular mechanisms underlying host-pathogen interactions and components of pathogenicity, methods for developing X. oryzae pv. oryzae-resistant rice cultivars, strategies to mitigate disease outbreaks, and newly discovered genes and tools for disease management. We conclude that the implementation and application of cutting-edge technologies and tools are crucial to avoid yield losses from BLB and ensure food security.
Collapse
Affiliation(s)
| | | | - Aiqun Jia
- School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Xiaolingwei No. 200, Xuanwu District, 210014, Nanjing, Jiangsu, China
| | - Djamila Onésime
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Kyung-Min Kim
- School of Applied BioSciences, College of Agriculture & Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-Gu, 41566, Daegu, Korea
| | - Bonaventure Cohovi Ahohuendo
- Faculty of Agricultural Sciences, University of Abomey-Calavi, 526 Recette Principale, Cotonou 01, 01 BP, Abomey-Calavi, Benin
| | - Jason R Rohr
- Department of Biological Sciences, University of Notre Dame, Eck Institute of Global Health, Environmental Change Initiative, 178 Galvin Life Science Center, 46556, Notre Dame, IN, USA
| |
Collapse
|
6
|
Huang X, Huang X, Guo L, He L, Xiao D, Zhan J, Wang A, Liang R. Comparative Transcriptome Analysis Provides Insights into the Resistance in Pueraria [ Pueraria lobata (Willd.) Ohwi] in Response to Pseudo-Rust Disease. Int J Mol Sci 2022; 23:5223. [PMID: 35563613 PMCID: PMC9101505 DOI: 10.3390/ijms23095223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Pueraria lobata is an important medicinal and edible homologous plant that is widely cultivated in Asian countries. However, its production and quality are seriously threatened by its susceptibility to pseudo-rust disease. The underlying molecular mechanisms are poorly known, particularly from a transcriptional perspective. Pseudo-rust disease is a major disease in pueraria, primarily caused by Synchytrium puerariae Miy (SpM). In this study, transcriptomic profiles were analyzed and compared between two pueraria varieties: the disease-resistant variety (GUIGE18) and the susceptible variety (GUIGE8). The results suggest that the number of DEGs in GUIGE18 is always more than in GUIGE8 at each of the three time points after SpM infection, indicating that their responses to SpM infection may be different, and that the active response of GUIGE18 to SpM infection may occur earlier than that of GUIGE8. A total of 7044 differentially expressed genes (DEGs) were identified, and 406 co-expressed DEGs were screened out. Transcription factor analysis among the DEGs revealed that the bHLH, WRKY, ERF, and MYB families may play an important role in the interaction between pueraria and pathogens. A GO and KEGG enrichment analysis of these DEGs showed that they were mainly involved in the following pathways: metabolic, defense response, plant hormone signal transduction, MAPK signaling pathway-plant, plant pathogen interaction, flavonoid biosynthesis, phenylpropanoid biosynthesis, and secondary metabolite biosynthesis. The CPK, CESA, PME, and CYP gene families may play important roles in the early stages after SpM infection. The DEGs that encode antioxidase (CAT, XDH, and SOD) were much more up-regulated. Defense enzyme activity, endogenous hormones, and flavonoid content changed significantly in the two varieties at the three infection stages. Finally, we speculated on the regulatory pathways of pueraria pseudo-rust and found that an oxidation-reduction process, flavonoid biosynthesis, and ABA signaling genes may be associated with the response to SpM infection in pueraria. These results expand the understanding of pueraria resistance and physiological regulations by multiple pathways.
Collapse
Affiliation(s)
- Xinlu Huang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
| | - Xiaoxi Huang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
| | - Lijun Guo
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
| | - Longfei He
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Dong Xiao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Jie Zhan
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Aiqin Wang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.H.); (X.H.); (L.G.); (L.H.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Renfan Liang
- Academy of Agricultural Science, Guangxi University, Nanning 530004, China
| |
Collapse
|