1
|
Zhang H, Fu L, Leiliang X, Qu C, Wu W, Wen R, Huang N, He Q, Cheng Q, Liu G, Cheng Y. Beyond the Gut: The intratumoral microbiome's influence on tumorigenesis and treatment response. Cancer Commun (Lond) 2024; 44:1130-1167. [PMID: 39087354 PMCID: PMC11483591 DOI: 10.1002/cac2.12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024] Open
Abstract
The intratumoral microbiome (TM) refers to the microorganisms in the tumor tissues, including bacteria, fungi, viruses, and so on, and is distinct from the gut microbiome and circulating microbiota. TM is strongly associated with tumorigenesis, progression, metastasis, and response to therapy. This paper highlights the current status of TM. Tract sources, adjacent normal tissue, circulatory system, and concomitant tumor co-metastasis are the main origin of TM. The advanced techniques in TM analysis are comprehensively summarized. Besides, TM is involved in tumor progression through several mechanisms, including DNA damage, activation of oncogenic signaling pathways (phosphoinositide 3-kinase [PI3K], signal transducer and activator of transcription [STAT], WNT/β-catenin, and extracellular regulated protein kinases [ERK]), influence of cytokines and induce inflammatory responses, and interaction with the tumor microenvironment (anti-tumor immunity, pro-tumor immunity, and microbial-derived metabolites). Moreover, promising directions of TM in tumor therapy include immunotherapy, chemotherapy, radiotherapy, the application of probiotics/prebiotics/synbiotics, fecal microbiome transplantation, engineered microbiota, phage therapy, and oncolytic virus therapy. The inherent challenges of clinical application are also summarized. This review provides a comprehensive landscape for analyzing TM, especially the TM-related mechanisms and TM-based treatment in cancer.
Collapse
Affiliation(s)
- Hao Zhang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Li Fu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
- Department of GastroenterologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Xinwen Leiliang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Chunrun Qu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Wantao Wu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Rong Wen
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Ning Huang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Qiuguang He
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Quan Cheng
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guodong Liu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Yuan Cheng
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| |
Collapse
|
2
|
Ding S, Chang J, Zhang W, Ji S, Chi Y. Environmental microbial diversity and water pollution characteristics resulted from 150 km coastline in Quanzhou Bay offshore area. Front Microbiol 2024; 15:1438133. [PMID: 39027103 PMCID: PMC11254811 DOI: 10.3389/fmicb.2024.1438133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
As a typical transitional area between the land and sea, the offshore area is subjected to the triple synergistic pressure from the ocean, land, and atmosphere at the same time, and has obvious characteristics such as complex and diverse chemical, physical, and biological processes, coupled and changeable environmental factors, and sensitive and fragile ecological environment. With the deepening of the urbanization process, the offshore area has gradually become the final receptions of pollutants produced by industry, agriculture, and service industries, and plays a key role in the global environmental geochemical cycle of pollutants. In this study, the Quanzhou Bay offshore area was selected as the research object. Sediment and water samples were collected from 8 sampling points within about 150 km of coastline in the Quanzhou Bay offshore area. 16s rDNA high-throughput sequencing method was used to investigate the variation rule of microbial diversity in the offshore area, and multi-parameter water quality analysis was carried out at the same time. The results showed that the distribution characteristics of microbial communities and water quality in the Quanzhou Bay offshore area showed significant differences in different latitudes and longitudes. This difference is closely related to the complexity of offshore area. This study can provide scientific support for protecting and improving the ecological environment of offshore areas.
Collapse
Affiliation(s)
- Siqi Ding
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Jiamin Chang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Wenzhou Zhang
- School of Pharmacy, Quanzhou Medical College, Quanzhou, China
| | - Shouping Ji
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, China
| | - Yulang Chi
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, China
| |
Collapse
|
3
|
Messaoudi O, Benamar I, Azizi A, Albukhaty S, Khane Y, Sulaiman GM, Salem-Bekhit MM, Hamdi K, Ghoummid S, Zoukel A, Messahli I, Kerchich Y, Benaceur F, Salem MM, Bendahou M. Characterization of Silver Carbonate Nanoparticles Biosynthesized Using Marine Actinobacteria and Exploring of Their Antimicrobial and Antibiofilm Activity. Mar Drugs 2023; 21:536. [PMID: 37888471 PMCID: PMC10608482 DOI: 10.3390/md21100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Bacterial resistance to different antimicrobial agents is growing with alarming speed, especially when bacterial cells are living in biofilm. Hybrid nanoparticles, synthesized through the green method, hold promise as a potential solution to this challenge. In this study, 66 actinomycete strains were isolated from three distinct marine sources: marine sediment, the algae Codium bursa, and the marine sponge Chondrosia reniformis. From the entirety of the isolated strains, one strain, S26, identified as Saccharopolyspora erythrea, was selected based on its taxonomic position and significant antimicrobial activity. Using the biomass of the selected marine Actinobacteria, the green synthesis of eco-friendly silver carbonate nanoparticles (BioAg2CO3NPs) is reported for the first time in this pioneering study. The BioAg2CO3NPs were characterized using different spectroscopic and microscopic analyses; the synthesized BioAg2CO3NPs primarily exhibit a triangular shape, with an approximate size of 100 nm. Biological activity evaluation indicated that the BioAg2CO3NPs exhibited good antimicrobial activity against all tested microorganisms and were able to remove 58% of the biofilm formed by the Klebsiella pneumoniae kp6 strain.
Collapse
Affiliation(s)
- Omar Messaoudi
- Department of Biology, Faculty of Science, University of Amar Telidji, Laghouat 03000, Algeria; (O.M.); (I.B.); (K.H.); (S.G.); (I.M.); (F.B.)
- Laboratory of Applied Microbiology in Food and Environment, Abou Bekr Belkaïd University, Tlemcen 13000, Algeria;
| | - Ibrahim Benamar
- Department of Biology, Faculty of Science, University of Amar Telidji, Laghouat 03000, Algeria; (O.M.); (I.B.); (K.H.); (S.G.); (I.M.); (F.B.)
- Laboratory of Applied Microbiology in Food and Environment, Abou Bekr Belkaïd University, Tlemcen 13000, Algeria;
| | - Ahmed Azizi
- Department of The Common Trunk Sciences and Technology, Faculty of Technology, University of Amar Telidji, Highway Ghardaia, P.O. Box G37 (M’kam), Laghouat 03000, Algeria;
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan 62001, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Yasmina Khane
- Faculty of Science and Technology, University of Ghardaia, BP455, Ghardaia 47000, Algeria;
| | - Ghassan M. Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq;
| | - Mounir M. Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Kaouthar Hamdi
- Department of Biology, Faculty of Science, University of Amar Telidji, Laghouat 03000, Algeria; (O.M.); (I.B.); (K.H.); (S.G.); (I.M.); (F.B.)
| | - Sirine Ghoummid
- Department of Biology, Faculty of Science, University of Amar Telidji, Laghouat 03000, Algeria; (O.M.); (I.B.); (K.H.); (S.G.); (I.M.); (F.B.)
| | - Abdelhalim Zoukel
- Laboratory Physico-Chemistry of Materials, Laghouat University, Laghouat 03000, Algeria;
- Center for Scientific and Technical Research in Physicochemical Analysis (PTAPC-Laghouat-CRAPC), Laghouat 03000, Algeria
| | - Ilhem Messahli
- Department of Biology, Faculty of Science, University of Amar Telidji, Laghouat 03000, Algeria; (O.M.); (I.B.); (K.H.); (S.G.); (I.M.); (F.B.)
| | - Yacine Kerchich
- École Nationale Polytechnique (ENP), Laboratory of Environmental Science and Technology, El Harrach 16200, Algeria;
| | - Farouk Benaceur
- Department of Biology, Faculty of Science, University of Amar Telidji, Laghouat 03000, Algeria; (O.M.); (I.B.); (K.H.); (S.G.); (I.M.); (F.B.)
- Research Unit of Medicinal Plant (RUMP) Attached to Center of Biotechnology (CRBt, 3000, Constantine), Laghouat 03000, Algeria
| | - Mohamed M. Salem
- College of Medicine, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Mourad Bendahou
- Laboratory of Applied Microbiology in Food and Environment, Abou Bekr Belkaïd University, Tlemcen 13000, Algeria;
| |
Collapse
|
4
|
Huang Z, Huang Y, Lai Q, Oren A, Wang W. Paracrocinitomix mangrovi gen. nov., sp. nov., isolated from a mangrove sediment: proposal of two new families, Phaeocystidibacteraceae fam. nov. and Owenweeksiaceae fam. nov., and emended description of the family Schleiferiaceae. Antonie Van Leeuwenhoek 2023; 116:171-184. [PMID: 36346556 DOI: 10.1007/s10482-022-01790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
A Gram-stain-negative and short rod-shaped bacterial strain designated GM2-3-6-6T was obtained from a mangrove sediment. Cells were light yellow-pigmented, catalase-positive and oxidase-positive. Carotenoid pigment was produced. Phylogeny of the 16S rRNA gene showed that strain GM2-3-6-6T was affiliated to the family Crocinitomicaceae, sharing maximum sequence similarities with Crocinitomix algicola 0182T, C. catalasitica IFO 15977T, and Putridiphycobacter roseus SM1701T of 93.8%, 93.6%, and 92.5%, respectively. The average nucleotide identity values, digital DNA-DNA hybridization estimates and average amino acid identity values between strain GM2-3-6-6T and the three close relatives were 68.6-68.8%, 18.5-19.2%, and 59.0-62.3%, respectively. The complete circular genome of strain GM2-3-6-6T was 4,365,762 bp in length with a DNA G + C content of 35.0%. The respiratory quinone was MK-7. The major polar lipids consisted of phosphatidylethanolamine, two unidentified phospholipids, one unidentified aminoglycolipid, one unidentified aminolipid and four other unidentified lipids. The major fatty acids were iso-C15:0, iso-C15:1 G, summed feature 3 (C16:1ω7c and/or C16:1ω6c), and iso-C17:0 3-OH. Based on genomic, phenotypic, and chemotaxonomic characterizations, strain GM2-3-6-6T represents a novel species of a novel genus, for which the name Paracrocinitomix mangrovi gen. nov., sp. nov. is proposed. The type strain is GM2-3-6-6T (= MCCC 1K04831T = KCTC 82931T). Additionally, phylogenomic analysis of the type strains of the family Schleiferiaceae and family Cryomorphaceae related members including uncultivated bacteria, was performed using the Genome Taxonomic Database toolkit (GTDB-Tk). Based on 16S rRNA gene phylogeny and genomic features, two novel families, Phaeocystidibacteraceae fam. nov. and Owenweeksiaceae fam. nov. are proposed. An emended description of the family Schleiferiaceae is also proposed.
Collapse
Affiliation(s)
- Zhaobin Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, People's Republic of China. .,Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou, China.
| | - Yuanyuan Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, People's Republic of China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Aharon Oren
- The Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wanpeng Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
5
|
dos Santos JDN, João SA, Martín J, Vicente F, Reyes F, Lage OM. iChip-Inspired Isolation, Bioactivities and Dereplication of Actinomycetota from Portuguese Beach Sediments. Microorganisms 2022; 10:1471. [PMID: 35889190 PMCID: PMC9319460 DOI: 10.3390/microorganisms10071471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Oceans hold a stunning number of unique microorganisms, which remain unstudied by culture-dependent methods due to failures in establishing the right conditions for these organisms to grow. In this work, an isolation effort inspired by the iChip was performed using marine sediments from Memoria beach, Portugal. The isolates obtained were identified by 16S rRNA gene analysis, fingerprinted using BOX-PCR and ERIC-PCR, searched for the putative presence of secondary metabolism genes associated with polyketide synthase I (PKS-I) and non-ribosomal peptide synthetases (NRPS), screened for antimicrobial activity against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213, and had bioactive extracts dereplicated by LC/HRMS. Of the 158 isolated strains, 96 were affiliated with the phylum Actinomycetota, PKS-I and NRPS genes were detected in 53 actinomycetotal strains, and 11 proved to be bioactive (10 against E. coli, 1 against S. aureus and 1 against both pathogens). Further bioactivities were explored using an "one strain many compounds" approach, with six strains showing continued bioactivity and one showing a novel one. Extract dereplication showed the presence of several known bioactive molecules and potential novel ones in the bioactive extracts. These results indicate the use of the bacteria isolated here as sources of new bioactive natural products.
Collapse
Affiliation(s)
- José Diogo Neves dos Santos
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal; (S.A.J.); (O.M.L.)
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Susana Afonso João
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal; (S.A.J.); (O.M.L.)
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento, 34 Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain; (J.M.); (F.V.); (F.R.)
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento, 34 Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain; (J.M.); (F.V.); (F.R.)
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento, 34 Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain; (J.M.); (F.V.); (F.R.)
| | - Olga Maria Lage
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal; (S.A.J.); (O.M.L.)
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
6
|
Horizontal Transfer of Virulence Factors by Pathogenic Enterobacteria to Marine Saprotrophic Bacteria during Co-Cultivation in Biofilm. BIOTECH 2022; 11:biotech11020017. [PMID: 35822790 PMCID: PMC9264390 DOI: 10.3390/biotech11020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Environmental problems associated with marine pollution and climate warming create favorable conditions for the penetration and survival of pathogenic bacteria in marine ecosystems. These microorganisms have interspecific competitive interactions with marine bacteria. Co-culture, as an important research strategy that mimics the natural environment of bacteria, can activate silent genes or clusters through interspecies interactions. The authors used modern biotechnology of co-cultivation to dynamically study intercellular interactions between different taxa of bacteria—pathogenic enterobacteria Yersinia pseudotuberculosis and Listeria monocytogenes and saprotrophic marine bacteria Bacillus sp. and Pseudomonas japonica isolated in summer from the coastal waters of the recreational areas of the Sea of Japan. The results of the experiments showed that during the formation of polycultural biofilms, horizontal transfer of genes encoding some pathogenicity factors from Y. pseudotuberculosis and L. monocytogenes to marine saprotrophic bacteria with different secretion systems is possible. It was previously thought that this was largely prevented by the type VI secretion system (T6SS) found in marine saprotrophic bacteria. The authors showed for the first time the ability of marine bacteria Bacillus sp. and P. japonica to biofilm formation with pathogenic enterobacteria Y. pseudotuberculosis and L. monocytogenes, saprophytic bacteria with type III secretion system (T3SS). For the first time, a marine saprotrophic strain of Bacillus sp. Revealed manifestations of hyaluronidase, proteolytic and hemolytic activity after cultivation in a polycultural biofilm with listeria. Saprotrophic marine bacteria that have acquired virulence factors from pathogenic enterobacteria, including antibiotic resistance genes, could potentially play a role in altering the biological properties of other members of the marine microbial community. In addition, given the possible interdomain nature of intercellular gene translocation, acquired virulence factors can be transferred to marine unicellular and multicellular eukaryotes. The results obtained contribute to the paradigm of the epidemiological significance and potential danger of anthropogenic pollution of marine ecosystems, which creates serious problems for public health and the development of marine culture as an important area of economic activity in coastal regions.
Collapse
|
7
|
Huang Z, Du Y, Lai Q. Hanstruepera crassostreae He et al. 2018 is a later heterotypic synonym of Pseudobizionia ponticola Park et al. 2018 and transfer of Pseudobizionia ponticola to the genus Hanstruepera as Hanstruepera ponticola comb. nov. Int J Syst Evol Microbiol 2022; 72. [PMID: 35244532 DOI: 10.1099/ijsem.0.005257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The 16S rRNA gene sequences of Pseudobizionia ponticola MM-14T and Hanstruepera crassostreae L53T shared 100 % sequence similarity. This study aimed to clarify the taxonomic position of the two species. Whole-genome comparisons showed that P. ponticola MM-14T and H. crassostreae L53T shared average nucleotide identity of 97.52 %, digital DNA-DNA hybridization of 75.30 % and average amino acid identity of 96.98 %. These values exceeded the threshold of bacterial species delineation. Furthermore, average amino acid identities of P. ponticola MM-14T and H. crassostreae L53T in comparison with Hanstruepera neustonica CC-PY-50T were 82.04 and 82.11 %, respectively. Phylogenetic analysis based on 16S rRNA gene and 120 bacterial conserved single-copy genes also supported that P. ponticola MM-14T and H. crassostreae L53T belonged to the genus Hanstruepera. Phenotypic and chemical taxonomic properties compared between P. ponticola MM-14T and H. crassostreae L53T were nearly identical. Colonies of the two species on marine agar plates were orange-pigmented, circular and smooth. Flexirubin-type pigments were present in both H. crassostreae L53T and P. ponticola MM-14T. The major fatty acids composition of the two species consisted of iso-C15 : 1 G, iso-C15 : 0, and iso-C17 : 0 3-OH, similar to H. neustonica CC-PY-50T. Based on priority, H. crassostreae He et al. 2018 is a later heterotypic synonym of P. ponticola Park et al. 2018, and P. ponticola should be transferred to the genus Hanstruepera as Hanstruepera ponticola comb. nov.
Collapse
Affiliation(s)
- Zhaobin Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, PR China
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, PR China
| | - Yaping Du
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| |
Collapse
|
8
|
Oceanobacter mangrovi Sp. Nov., a Novel Poly-β-hydroxybutyrate Accumulating Bacterium Isolated from Mangrove Sediment. Curr Microbiol 2022; 79:100. [PMID: 35150341 DOI: 10.1007/s00284-022-02798-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/01/2022] [Indexed: 11/03/2022]
Abstract
A Gram-stain-negative, rod-shaped, motile, mesophilic, and aerobic bacterial strain, designated SM2-42 T was isolated from a mangrove sediment. Catalase activity and oxidase activity were positive. Growth was observed at 20 °C-40 °C, pH 6.0-8.0, and in the presence of 0.5-5.0% NaCl. Cells of strain SM2-42 T contained poly-β-hydroxybutyrate granules. The 16S rRNA gene of strain SM2-42 T had maximum sequence similarity with Oceanobacter kriegii 197 T of 97.1%. Phylogenetic analysis based on 16S rRNA gene sequence and 120 conserved concatenated proteins indicated that strain SM2-42 T was affiliated to the genus Oceanobacter and formed a monophyletic branch with O. kriegii 197 T. The average nucleotide identity and digital DNA-DNA hybridization values between strain SM2-42 T and O. kriegii 197 T were 76.43% and 21.60%, respectively. The major isoprenoid quinone was Q-8. The major fatty acids (> 10%) comprised C16:0, summed feature 8 (C18:1ω7c and C18:1 ω6c), C18:0, and summed feature 3 (C16:1ω7c and/or C16:1 ω6c). The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, one unidentified aminolipid and two unidentified lipids. The draft genome size was 5,115,008 bp with DNA G + C content of 54.3%. Based on phylogenetic analyses and whole genomic comparisons, strain SM2-42 T represented a novel species, for which the name Oceanobacter mangrovi sp. nov. was proposed. The type strain was SM2-42 T (= MCCC 1K06300T = KCTC 82938 T).
Collapse
|