1
|
Boubsi F, Hoff G, Arguelles Arias A, Steels S, Andrić S, Anckaert A, Roulard R, Rigolet A, van Wuytswinkel O, Ongena M. Pectic homogalacturonan sensed by Bacillus acts as host associated cue to promote establishment and persistence in the rhizosphere. iScience 2023; 26:107925. [PMID: 37790276 PMCID: PMC10543691 DOI: 10.1016/j.isci.2023.107925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/19/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Bacillus velezensis isolates are among the most promising plant-associated beneficial bacteria used as biocontrol agents. However, various aspects of the chemical communication between the plant and these beneficials, determining root colonization ability, remain poorly described. Here we investigated the molecular basis of such interkingdom interaction occurring upon contact between Bacillus velezensis and its host via the sensing of pectin backbone homogalacturonan (HG). We showed that B. velezensis stimulates key developmental traits via a dynamic process involving two conserved pectinolytic enzymes. This response integrates transcriptional changes leading to the switch from planktonic to sessile cells, a strong increase in biofilm formation, and an accelerated sporulation dynamics while conserving the potential to efficiently produce specialized secondary metabolites. As a whole, we anticipate that this response of Bacillus to cell wall-derived host cues contributes to its establishment and persistence in the competitive rhizosphere niche and ipso facto to its activity as biocontrol agent.
Collapse
Affiliation(s)
- Farah Boubsi
- Microbial Processes and Interactions, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Grégory Hoff
- Microbial Processes and Interactions, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Anthony Arguelles Arias
- Microbial Processes and Interactions, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Sébastien Steels
- Microbial Processes and Interactions, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Sofija Andrić
- Microbial Processes and Interactions, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Adrien Anckaert
- Microbial Processes and Interactions, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Romain Roulard
- UMRT INRAe 1158 Plant Biology and Innovation, University of Picardie Jules Verne, UFR des Sciences, 80039 Amiens, France
| | - Augustin Rigolet
- Microbial Processes and Interactions, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Olivier van Wuytswinkel
- UMRT INRAe 1158 Plant Biology and Innovation, University of Picardie Jules Verne, UFR des Sciences, 80039 Amiens, France
| | - Marc Ongena
- Microbial Processes and Interactions, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| |
Collapse
|
2
|
Kaur H, Kaur A, Soni SK, Rishi P. Microbially-derived cocktail of carbohydrases as an anti-biofouling agents: a 'green approach'. BIOFOULING 2022; 38:455-481. [PMID: 35673761 DOI: 10.1080/08927014.2022.2085566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Enzymes, also known as biocatalysts, display vital properties like high substrate specificity, an eco-friendly nature, low energy inputs, and cost-effectiveness. Among their numerous known applications, enzymes that can target biofilms or their components are increasingly being investigated for their anti-biofouling action, particularly in healthcare, food manufacturing units and environmental applications. Enzymes can target biofilms at different levels like during the attachment of microorganisms, formation of exopolymeric substances (EPS), and their disruption thereafter. In this regard, a consortium of carbohydrases that can target heterogeneous polysaccharides present in the EPS matrix may provide an effective alternative to conventional chemical anti-biofouling methods. Further, for complete annihilation of biofilms, enzymes can be used alone or in conjunction with other antimicrobial agents. Enzymes hold the promise to replace the conventional methods with greener, more economical, and more efficient alternatives. The present article explores the potential and future perspectives of using carbohydrases as effective anti-biofilm agents.
Collapse
Affiliation(s)
- Harmanpreet Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Arashdeep Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | | | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
3
|
Jha S, Bhadani NK, Kumar A, Sengupta TK. Glucose-Induced Biofilm Formation in Bacillus thuringiensis KPWP1 is Associated with Increased Cell Surface Hydrophobicity and Increased Production of Exopolymeric Substances. Curr Microbiol 2021; 79:24. [PMID: 34905099 DOI: 10.1007/s00284-021-02699-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/29/2021] [Indexed: 11/28/2022]
Abstract
Bacillus thuringiensis is an agriculturally and medically important bacteria as it produces insecticidal Cry proteins and can form biofilm on different plant surfaces. Previous studies reported that the ubiquitous carbon source glucose could induce restricted motility and fractal pattern formation in the growing colonies of pH, salt and arsenate tolerant Bacillus thuringiensis KPWP1. As bacteria are evolved with the ability to exhibit multicellular behavior and biofilm formation under limiting conditions for survival, the present study was focused on exploring the effect of glucose in biofilm formation by Bacillus thuringiensis KPWP1. A significant rise in biofilm loads was observed with increased glucose concentrations in growth media. Compared to control, six times more biofilm load was marked in presence of 2% of glucose. Interestingly, it was observed that the effect was glucose specific and also not due to any change in the sugar-induced physicochemical property of the growth media as the addition of galactose or arabinose could not induce any significant increase in KPWP1 biofilm load. Scanning electron-, confocal laser scanning-microscopic studies and biochemical tests revealed that increased concentrations of glucose could induce increased production of exopolymeric substances, increased number of densely-packed micro-colonies in KPWP1 biofilm and increased hydrophobicity and adherence properties in KPWP1cells.
Collapse
Affiliation(s)
- Sushmita Jha
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741 246, India
| | - Nirbhay K Bhadani
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741 246, India
| | - Abhinash Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741 246, India
| | - Tapas K Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741 246, India.
| |
Collapse
|