1
|
Luo R, Hu L, Wang D, Xiao K, Liu X, Kang Y, Wang Q. Enhanced biosynthesis of 6-aminocaproic acid in engineered Escherichia coli with artificial protein cage-organized enzymatic cascades. BIORESOURCE TECHNOLOGY 2025; 431:132641. [PMID: 40345342 DOI: 10.1016/j.biortech.2025.132641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 04/22/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Microbial synthesis of 6-aminocaproic acid (6-ACA), a key nylon-6 monomer, was the focus of this study. Our previous work on 6-ACA biosynthesis using an artificial iterative carbon-chain-extension cycle showed potential, but the impact of intermediates on metabolism remained unresolved. To address this, a bacterial microcompartment (BMC) was engineered in Escherichia coli to encapsulate 6-ACA synthesis enzymes, effectively controlling the release of intermediate products. This intervention led to a 90.85 % increase in cell growth and a final 6-ACA yield increase from 46.76 mg/L to 1.12 g/L in a 1 L fermentor. The redesigned BMC demonstrated potential in regulating cascade enzymatic catalysis, particularly in managing intermediates that could impact enzyme proteins, cause cytotoxicity, or DNA damage in cells. This work highlights the potential of the redesigned BMC in enhancing production by controlling the effects of intermediates on cellular processes.
Collapse
Affiliation(s)
- Ruoshi Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China; CAS Key Lab Syst Microbial Biotechnol, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin 300308, PR China
| | - Lin Hu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Dan Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China.
| | - Kaixing Xiao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Xuemei Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Yaqi Kang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Qinhong Wang
- CAS Key Lab Syst Microbial Biotechnol, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin 300308, PR China.
| |
Collapse
|
2
|
Keung WS, Zhang WH, Luo HY, Chan KC, Chan YM, Xu J. Correlation between the structures of natural polysaccharides and their properties in regulating gut microbiota: Current understanding and beyond. Carbohydr Polym 2025; 352:123209. [PMID: 39843110 DOI: 10.1016/j.carbpol.2024.123209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025]
Abstract
Natural polysaccharides have complex structural properties and a wide range of health-promoting effects. Accumulating evidence suggests that the effects are significantly mediated through fermentation by gut microbiota. In recent years, the relationship between the structures of natural polysaccharides and their properties in regulating gut microbiota has garnered significant research attention as researchers attempt to precisely understand the role of gut microbiota in the bioactivities of natural polysaccharides. Progress in this niche, however, remains limited. In this review, we first provide an overview of current research investigating this structure-property relationship. We then present a detailed correlation analysis between the structural characteristics of 159 purified natural polysaccharides and their effects on gut microbiota reported over the past two decades. The analysis revealed that diverse gut bacteria show specific correlations with the molecular weight, glycosidic linkages, and monosaccharide composition of natural polysaccharides. Multifaceted molecular mechanisms, including carbohydrate binding, enzymatic degradation, and cross-feeding, were proposed to be collectively involved in these correlations. Finally, we offer our perspective on future studies to further improve our understanding of the relationship between polysaccharide structure and gut microbiota regulation.
Collapse
Affiliation(s)
- Wing-Shan Keung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Wei-Hao Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Han-Yan Luo
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Kam-Chun Chan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Yui-Man Chan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| |
Collapse
|
3
|
Jallet D, Soldan V, Shayan R, Stella A, Ismail N, Zenati R, Cahoreau E, Burlet-Schiltz O, Balor S, Millard P, Heux S. Integrative in vivo analysis of the ethanolamine utilization bacterial microcompartment in Escherichia coli. mSystems 2024; 9:e0075024. [PMID: 39023255 PMCID: PMC11334477 DOI: 10.1128/msystems.00750-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Bacterial microcompartments (BMCs) are self-assembling protein megacomplexes that encapsulate metabolic pathways. Although approximately 20% of sequenced bacterial genomes contain operons encoding putative BMCs, few have been thoroughly characterized, nor any in the most studied Escherichia coli strains. We used an interdisciplinary approach to gain deep molecular and functional insights into the ethanolamine utilization (Eut) BMC system encoded by the eut operon in E. coli K-12. The eut genotype was linked with the ethanolamine utilization phenotype using deletion and overexpression mutants. The subcellular dynamics and morphology of the E. coli Eut BMCs were characterized in cellula by fluorescence microscopy and electron (cryo)microscopy. The minimal proteome reorganization required for ethanolamine utilization and the in vivo stoichiometric composition of the Eut BMC were determined by quantitative proteomics. Finally, the first flux map connecting the Eut BMC with central metabolism in cellula was obtained by genome-scale modeling and 13C-fluxomics. Our results reveal that contrary to previous suggestions, ethanolamine serves both as a nitrogen and a carbon source in E. coli K-12, while also contributing to significant metabolic overflow. Overall, this study provides a quantitative molecular and functional understanding of the BMCs involved in ethanolamine assimilation by E. coli.IMPORTANCEThe properties of bacterial microcompartments make them an ideal tool for building orthogonal network structures with minimal interactions with native metabolic and regulatory networks. However, this requires an understanding of how BMCs work natively. In this study, we combined genetic manipulation, multi-omics, modeling, and microscopy to address this issue for Eut BMCs. We show that the Eut BMC in Escherichia coli turns ethanolamine into usable carbon and nitrogen substrates to sustain growth. These results improve our understanding of compartmentalization in a widely used bacterial chassis.
Collapse
Affiliation(s)
- Denis Jallet
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Vanessa Soldan
- Plateforme de Microscopie Electronique Intégrative, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Toulouse, France
| | - Ramteen Shayan
- Plateforme de Microscopie Electronique Intégrative, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Toulouse, France
| | - Alexandre Stella
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
- Infrastructure nationale de protéomique, ProFI, Toulouse, France
| | - Nour Ismail
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Rania Zenati
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Edern Cahoreau
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- MetaToul-MetaboHUB, National infrastructure of metabolomics and fluxomics, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
- Infrastructure nationale de protéomique, ProFI, Toulouse, France
| | - Stéphanie Balor
- Plateforme de Microscopie Electronique Intégrative, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Toulouse, France
| | - Pierre Millard
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- MetaToul-MetaboHUB, National infrastructure of metabolomics and fluxomics, Toulouse, France
| | - Stéphanie Heux
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
4
|
Böer T, Engelhardt L, Lüschen A, Eysell L, Yoshida H, Schneider D, Angenent LT, Basen M, Daniel R, Poehlein A. Isolation and characterization of novel acetogenic Moorella strains for employment as potential thermophilic biocatalysts. FEMS Microbiol Ecol 2024; 100:fiae109. [PMID: 39118367 PMCID: PMC11328732 DOI: 10.1093/femsec/fiae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/05/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024] Open
Abstract
Thermophilic acetogenic bacteria have attracted attention as promising candidates for biotechnological applications such as syngas fermentation, microbial electrosynthesis, and methanol conversion. Here, we aimed to isolate and characterize novel thermophilic acetogens from diverse environments. Enrichment of heterotrophic and autotrophic acetogens was monitored by 16S rRNA gene-based bacterial community analysis. Seven novel Moorella strains were isolated and characterized by genomic and physiological analyses. Two Moorella humiferrea isolates showed considerable differences during autotrophic growth. The M. humiferrea LNE isolate (DSM 117358) fermented carbon monoxide (CO) to acetate, while the M. humiferrea OCP isolate (DSM 117359) transformed CO to hydrogen and carbon dioxide (H2 + CO2), employing the water-gas shift reaction. Another carboxydotrophic hydrogenogenic Moorella strain was isolated from the covering soil of an active charcoal burning pile and proposed as the type strain (ACPsT) of the novel species Moorella carbonis (DSM 116161T and CCOS 2103T). The remaining four novel strains were affiliated with Moorella thermoacetica and showed, together with the type strain DSM 2955T, the production of small amounts of ethanol from H2 + CO2 in addition to acetate. The physiological analyses of the novel Moorella strains revealed isolate-specific differences that considerably increase the knowledge base on thermophilic acetogens for future applications.
Collapse
Affiliation(s)
- Tim Böer
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Lisa Engelhardt
- Microbiology, Institute of Biological Sciences, University Rostock, 18059 Rostock, Germany
| | - Alina Lüschen
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Lena Eysell
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Hiroki Yoshida
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Largus T Angenent
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Mirko Basen
- Microbiology, Institute of Biological Sciences, University Rostock, 18059 Rostock, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Dank A, Liu Y, Wen X, Lin F, Wiersma A, Boeren S, Smid EJ, Notebaart RA, Abee T. Ethylene glycol is metabolized to ethanol and acetate and induces expression of bacterial microcompartments in Propionibacterium freudenreichii. Heliyon 2024; 10:e33444. [PMID: 39027605 PMCID: PMC11255663 DOI: 10.1016/j.heliyon.2024.e33444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Ethylene glycol (EG, 1,2-ethanediol) is a two-carbon dihydroxy alcohol that can be derived from fermentation of plant-derived xylose and arabinose and which can be formed during food fermentations. Here we show that Propionibacterium freudenreichii DSM 20271 is able to convert EG in anaerobic conditions to ethanol and acetate in almost equimolar amounts. The metabolism of EG led to a moderate increase of biomass, indicating its metabolism is energetically favourable. A proteomic analysis revealed EG induced expression of the pdu-cluster, which encodes a functional bacterial microcompartment (BMC) involved in the degradation of 1,2-propanediol, with the presence of BMCs confirmed using transmission electron microscopy. Cross-examination of the proteomes of 1,2-propanediol and EG grown cells revealed PDU BMC-expressing cells have elevated levels of DNA repair proteins and cysteine biosynthesis proteins. Cells grown in 1,2-propanediol and EG also showed enhanced resistance against acid and bile salt-induced stresses compared to lactate-grown cells. Our analysis of whole genome sequences of selected genomes of BMC-encoding microorganisms able to metabolize EG with acetaldehyde as intermediate indicate a potentially broad-distributed role of the pdu operon in metabolism of EG. Based on our results we conclude EG is metabolized to acetate and ethanol with acetaldehyde as intermediate within BMCs in P. freudenreichii.
Collapse
Affiliation(s)
- Alexander Dank
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Yue Liu
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Xin Wen
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Fan Lin
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Anne Wiersma
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, Netherlands
| | - Eddy J. Smid
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | | | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
6
|
Zhang Z, Huo J, Velo J, Zhou H, Flaherty A, Saier MH. Comprehensive Characterization of fucAO Operon Activation in Escherichia coli. Int J Mol Sci 2024; 25:3946. [PMID: 38612757 PMCID: PMC11011485 DOI: 10.3390/ijms25073946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Wildtype Escherichia coli cells cannot grow on L-1,2-propanediol, as the fucAO operon within the fucose (fuc) regulon is thought to be silent in the absence of L-fucose. Little information is available concerning the transcriptional regulation of this operon. Here, we first confirm that fucAO operon expression is highly inducible by fucose and is primarily attributable to the upstream operon promoter, while the fucO promoter within the 3'-end of fucA is weak and uninducible. Using 5'RACE, we identify the actual transcriptional start site (TSS) of the main fucAO operon promoter, refuting the originally proposed TSS. Several lines of evidence are provided showing that the fucAO locus is within a transcriptionally repressed region on the chromosome. Operon activation is dependent on FucR and Crp but not SrsR. Two Crp-cAMP binding sites previously found in the regulatory region are validated, where the upstream site plays a more critical role than the downstream site in operon activation. Furthermore, two FucR binding sites are identified, where the downstream site near the first Crp site is more important than the upstream site. Operon transcription relies on Crp-cAMP to a greater degree than on FucR. Our data strongly suggest that FucR mainly functions to facilitate the binding of Crp to its upstream site, which in turn activates the fucAO promoter by efficiently recruiting RNA polymerase.
Collapse
Affiliation(s)
- Zhongge Zhang
- Department of Molecular Biology, School of Biological Sciences, University of California at San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0116, USA; (J.H.); (J.V.); (A.F.)
| | | | | | | | | | - Milton H. Saier
- Department of Molecular Biology, School of Biological Sciences, University of California at San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0116, USA; (J.H.); (J.V.); (A.F.)
| |
Collapse
|
7
|
Kwao-Zigah G, Bediako-Bowan A, Boateng PA, Aryee GK, Abbang SM, Atampugbire G, Quaye O, Tagoe EA. Microbiome Dysbiosis, Dietary Intake and Lifestyle-Associated Factors Involve in Epigenetic Modulations in Colorectal Cancer: A Narrative Review. Cancer Control 2024; 31:10732748241263650. [PMID: 38889965 PMCID: PMC11186396 DOI: 10.1177/10732748241263650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Background: Colorectal cancer is the second cause of cancer mortality and the third most commonly diagnosed cancer worldwide. Current data available implicate epigenetic modulations in colorectal cancer development. The health of the large bowel is impacted by gut microbiome dysbiosis, which may lead to colon and rectum cancers. The release of microbial metabolites and toxins by these microbiotas has been shown to activate epigenetic processes leading to colorectal cancer development. Increased consumption of a 'Westernized diet' and certain lifestyle factors such as excessive consumption of alcohol have been associated with colorectal cancer.Purpose: In this review, we seek to examine current knowledge on the involvement of gut microbiota, dietary factors, and alcohol consumption in colorectal cancer development through epigenetic modulations.Methods: A review of several published articles focusing on the mechanism of how changes in the gut microbiome, diet, and excessive alcohol consumption contribute to colorectal cancer development and the potential of using these factors as biomarkers for colorectal cancer diagnosis.Conclusions: This review presents scientific findings that provide a hopeful future for manipulating gut microbiome, diet, and alcohol consumption in colorectal cancer patients' management and care.
Collapse
Affiliation(s)
- Genevieve Kwao-Zigah
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Antionette Bediako-Bowan
- Department of Surgery, University of Ghana Medical School, Accra, Ghana
- Department of Surgery, Korle Bu Teaching Hospital, Accra, Ghana
| | - Pius Agyenim Boateng
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Gloria Kezia Aryee
- Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| | - Stacy Magdalene Abbang
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Gabriel Atampugbire
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Emmanuel A. Tagoe
- Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
8
|
Shi F, Almerick T Boncan D, Wan HT, Chan TF, Zhang EL, Lai KP, Wong CKC. Hepatic metabolism gene expression and gut microbes in offspring, subjected to in-utero PFOS exposure and postnatal diet challenges. CHEMOSPHERE 2022; 308:136196. [PMID: 36041519 DOI: 10.1016/j.chemosphere.2022.136196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
We examined the changes in hepatic metabolic gene expression and gut microbiota of offspring exposed to PFOS in-utero. At GD17.5, our data showed that PFOS exposure decreased fetal bodyweights and hepatic metabolic gene expressions but increased relative liver mass and lipid accumulation. At PND21, in-utero high-dose PFOS-exposed offspring exhibited significantly greater bodyweight (catch-up-growth), associated with significant induction of hepatic metabolic gene expression. In addition, 16SrRNA-sequencing of the cecal samples revealed an increase in carbohydrate catabolism but a reduction in microbial polysaccharide synthesis and short-chain fatty acid (SCFA) metabolism. From PND21-80, a postnatal diet-challenge for the offspring was conducted. At PND80 under a normal diet, in-utero high-dose PFOS-exposed offspring maintained the growth "catch-up" effect. In contrast, in a high-fat-diet, the bodyweight of in-utero high-dose PFOS-exposed adult offspring were significantly lesser than the corresponding low-dose and control groups. Even though in the high-fat-diet, the in-utero PFOS-exposed adult offspring showed significant upregulation of hepatic metabolic genes, the lower bodyweight suggests that they had difficulty utilizing high-fat nutrients. Noteworthy, the metagenomic data showed a significant reduction in the biosynthesis of microbial polysaccharides, vitamin B, and SCFAs in the PFOS-exposed adult offspring. Furthermore, the observed effects were significantly reduced in the PFOS-exposed adult offspring with the high-fat diet but supplemented with sucrose. Our study demonstrated that in-utero PFOS exposure caused inefficient fat metabolism and increased the risk of hepatic steatosis in offspring.
Collapse
Affiliation(s)
- Feng Shi
- State Key Laboratory in Environmental and Biological Analysis, Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Delbert Almerick T Boncan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hin Ting Wan
- State Key Laboratory in Environmental and Biological Analysis, Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ting Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Eric L Zhang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Chris Kong-Chu Wong
- State Key Laboratory in Environmental and Biological Analysis, Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
9
|
Diether NE, Nam SL, Fouhse J, Le Thanh BV, Stothard P, Zijlstra RT, Harynuk J, de la Mata P, Willing BP. Dietary benzoic acid and supplemental enzymes alter fiber-fermenting taxa and metabolites in the cecum of weaned pigs. J Anim Sci 2022; 100:skac324. [PMID: 36205053 PMCID: PMC9683507 DOI: 10.1093/jas/skac324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Inclusion of enzymes and organic acids in pig diets is an important strategy supporting decreased antibiotic usage in pork production. However, limited knowledge exists about how these additives impact intestinal microbes and their metabolites. To examine the effects of benzoic acid and enzymes on gut microbiota and metabolome, 160 pigs were assigned to one of four diets 7 days after weaning: a control diet or the addition of 0.5% benzoic acid, 0.045% dietary enzymes (phytase, β-glucanase, xylanase, and α-amylase), or both and fed ad libitum for 21 to 22 d. Individual growth performance and group diarrhea incidence data were collected throughout the experimental period. A decrease of 20% in pen-level diarrhea incidence from days 8 to 14 in pigs-fed both benzoic acid and enzymes compared to the control diet (P = 0.047). Cecal digesta samples were collected at the end of the experimental period from 40 piglets (n = 10 per group) and evaluated for differences using 16S rRNA sequencing and two-dimensional gas chromatography and time-of-flight mass spectrometry (GCxGC-TOFMS). Analysis of cecal microbiota diversity revealed that benzoic acid altered microbiota composition (Unweighted Unifrac, P = 0.047, r2 = 0.07) and decreased α-diversity (Shannon, P = 0.041; Faith's Phylogenetic Diversity, P = 0.041). Dietary enzymes increased fiber-fermenting bacterial taxa such as Prevotellaceae. Two-step feature selection identified 17 cecal metabolites that differed among diets, including increased microbial cross-feeding product 1,2-propanediol in pigs-fed benzoic acid-containing diets. In conclusion, dietary benzoic acid and enzymes affected the gut microbiota and metabolome of weaned pigs and may support the health and resolution of postweaning diarrhea.
Collapse
Affiliation(s)
- Natalie E Diether
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Seo Lin Nam
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Janelle Fouhse
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Bich V Le Thanh
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Paul Stothard
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Ruurd T Zijlstra
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - James Harynuk
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Paulina de la Mata
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Benjamin P Willing
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
10
|
Jang J, Forbes VE, Sadowsky MJ. Probable role of Cutibacterium acnes in the gut of the polychaete Capitella teleta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151127. [PMID: 34688749 DOI: 10.1016/j.scitotenv.2021.151127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Capitella teleta, a marine polychaete that feeds on a refractory diet consisting of sediment, was shown to contain unique gut microbiota comprised of microbial functional groups involved in fermentation. Results of our previous studies showed that C. teleta's core gut microbiota were dominated by propionibacteria, and that these bacteria were more abundant in worms than in sediment and feces. In order to test the hypothesis that the worm nutritionally benefits from its gut microbiota, we identified, and genetically and biochemically characterized Cutibacterium acnes strains (formerly Propionibacterium acnes) that were isolated from the gut of C. teleta. Here we show that 13 worm-isolated Cutibacterium acnes strains primarily belonged to phylotype group IB, likely as a clonal population. We also provide evidence that all tested strains produced propionate and vitamin B12, which are essential host-requiring microbial metabolites. The presence of C. acnes in C. teleta was not unique to our worm culture and was also found in those obtained from geographically distant laboratories located in the U.S. and Europe. Moreover, populations of worm gut-associated C. acnes increased following antibiotic treatment. Collectively, results of this study demonstrated that C. acnes is a member of the worm's core functional microbiota and is likely selectively favored by the physiology and chemistry of the host gut environment. To our knowledge, this is the first report of the presence of C. acnes in the C. teleta gut. Our data strongly suggest that C. acnes, a bacterium previously studied as an opportunistic pathogen, can likely act as a symbiont in C. teleta providing the host essential nutrients for survival, growth, and reproduction.
Collapse
Affiliation(s)
- Jeonghwan Jang
- Division of Biotechnology, Jeonbuk National University, Iksan, Republic of Korea; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA; Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Valery E Forbes
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA.
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA; Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN, USA; Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
11
|
Zeng Z, Dank A, Smid EJ, Notebaart RA, Abee T. Bacterial microcompartments in food-related microbes. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|