1
|
Zhong Q, Nasreen M, Yang R, Struwe M, Kobe B, Kappler U. Beyond anaerobic respiration-new physiological roles for DmsABC and other S-/N-oxide reductases in Escherichia coli. J Bacteriol 2025; 207:e0046324. [PMID: 40162811 PMCID: PMC12096835 DOI: 10.1128/jb.00463-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Sulfoxide reductases in pathogenic bacteria have recently received increasing attention for their association with virulence and survival within the host. Here, we have re-investigated the physiological role of the molybdenum-containing DmsABC dimethyl sulfoxide (DMSO) reductase from Escherichia coli, which has a proposed role in anaerobic respiration with DMSO. Our investigation into potential physiological substrates revealed that DmsABC efficiently reduces pyrimidine N-oxide, nicotinamide N-oxide, and methionine sulfoxide, and exposure to host cell-produced stressors such as hypochlorite or hydrogen peroxide specifically increased expression of the E. coli dmsA gene. E. coli strains lacking dmsA showed increased lag times in the presence of hypochlorite, and these strains also showed up to a 90% reduction in adherence to human bladder cells. Interestingly, in the presence of hypochlorite, expression of multiple alternative S-/N-oxide reductases present in E. coli was elevated by 2- to 4-fold in a ∆dmsA strain compared to the wild-type strain, suggesting functional redundancy. The phenotypes of the E. coli ∆dmsA strains were strikingly similar to ∆dmsA strains of the respiratory pathogen Haemophilus influenzae, which confirms the role of both enzymes in supporting host-pathogen interactions. We propose that this function is conserved in enzymes closely related to E. coli DmsABC. Our study also uncovered that the expression of many E. coli Mo enzymes was induced by oxidative stressors, including metals such as copper, and further work should be directed at determining the connection of these enzymes to host-pathogen interactions.IMPORTANCEBacterial urinary tract infections are debilitating and frequently recurring in human populations worldwide, and Escherichia coli strains are a major cause of these infections. In this study, we have uncovered a new mechanism by which E. coli can avoid being killed by the human immune system. The bacteria use a set of seven related enzymes that can reverse damage to essential cell components such as amino acids, vitamins, and DNA building blocks. Antibacterial compounds produced by the human immune system specifically induced the production of these enzymes, confirming that they play a role in helping E. coli survive during infection and making these enzymes potential future drug targets.
Collapse
Affiliation(s)
- Qifeng Zhong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Marufa Nasreen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Ruizhe Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Michel Struwe
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
2
|
Nasreen M, Ellis D, Hosmer J, Essilfie AT, Fantino E, Sly P, McEwan AG, Kappler U. The DmsABC S-oxide reductase is an essential component of a novel, hypochlorite-inducible system of extracellular stress defense in Haemophilus influenzae. Front Microbiol 2024; 15:1359513. [PMID: 38638903 PMCID: PMC11024254 DOI: 10.3389/fmicb.2024.1359513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Defenses against oxidative damage to cell components are essential for survival of bacterial pathogens during infection, and here we have uncovered that the DmsABC S-/N-oxide reductase is essential for virulence and in-host survival of the human-adapted pathogen, Haemophilus influenzae. In several different infection models, H. influenzae ΔdmsA strains showed reduced immunogenicity as well as lower levels of survival in contact with host cells. Expression of DmsABC was induced in the presence of hypochlorite and paraquat, closely linking this enzyme to defense against host-produced antimicrobials. In addition to methionine sulfoxide, DmsABC converted nicotinamide- and pyrimidine-N-oxide, precursors of NAD and pyrimidine for which H. influenzae is an auxotroph, at physiologically relevant concentrations, suggesting that these compounds could be natural substrates for DmsABC. Our data show that DmsABC forms part of a novel, periplasmic system for defense against host-induced S- and N-oxide stress that also comprises the functionally related MtsZ S-oxide reductase and the MsrAB peptide methionine sulfoxide reductase. All three enzymes are induced following exposure of the bacteria to hypochlorite. MsrAB is required for physical resistance to HOCl and protein repair. In contrast, DmsABC was required for intracellular colonization of host cells and, together with MtsZ, contributed to resistance to N-Chlorotaurine. Our work expands and redefines the physiological role of DmsABC and highlights the importance of different types of S-oxide reductases for bacterial virulence.
Collapse
Affiliation(s)
- Marufa Nasreen
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia
| | - Daniel Ellis
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia
| | - Jennifer Hosmer
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia
| | | | | | - Peter Sly
- Child Health Research Centre, South Brisbane, QLD, Australia
| | - Alastair G. McEwan
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia
| | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
3
|
Ganio K, Nasreen M, Yang Z, Maunders EA, Luo Z, Hossain SI, Ngu DHY, Ellis D, Gu J, Neville SL, Wilksch J, Gunn AP, Whittall JJ, Kobe B, Deplazes E, Kappler U, McDevitt CA. Hfe Permease and Haemophilus influenzae Manganese Homeostasis. ACS Infect Dis 2024; 10:436-452. [PMID: 38240689 PMCID: PMC10863617 DOI: 10.1021/acsinfecdis.3c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
Haemophilus influenzae is a commensal of the human upper respiratory tract that can infect diverse host niches due, at least in part, to its ability to withstand both endogenous and host-mediated oxidative stresses. Here, we show that hfeA, a gene previously linked to iron import, is essential for H. influenzae manganese recruitment via the HfeBCD transporter. Structural analyses show that metal binding in HfeA uses a unique mechanism that involves substantial rotation of the C-terminal lobe of the protein. Disruption of hfeA reduced H. influenzae manganese acquisition and was associated with decreased growth under aerobic conditions, impaired manganese-superoxide dismutase activity, reduced survival in macrophages, and changes in biofilm production in the presence of superoxide. Collectively, this work shows that HfeA contributes to H. influenzae manganese acquisition and virulence attributes. High conservation of the hfeABCD permease in Haemophilus species suggests that it may serve similar roles in other pathogenic Pasteurellaceae.
Collapse
Affiliation(s)
- Katherine Ganio
- Department
of Microbiology and Immunology, the Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Marufa Nasreen
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian
Infectious Diseases Research Centre, The
University of Queensland, St Lucia, Queensland 4072, Australia
| | - Zihao Yang
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian
Infectious Diseases Research Centre, The
University of Queensland, St Lucia, Queensland 4072, Australia
| | - Eve A. Maunders
- Department
of Microbiology and Immunology, the Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Zhenyao Luo
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian
Infectious Diseases Research Centre, The
University of Queensland, St Lucia, Queensland 4072, Australia
- Institute
for Molecular Bioscience, The University
of Queensland, St Lucia, Queensland 4072, Australia
| | - Sheikh Imamul Hossain
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- School
of Life Sciences, University of Technology
Sydney, Ultimo, New South Wales 2007, Australia
| | - Dalton H. Y. Ngu
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian
Infectious Diseases Research Centre, The
University of Queensland, St Lucia, Queensland 4072, Australia
- Institute
for Molecular Bioscience, The University
of Queensland, St Lucia, Queensland 4072, Australia
| | - Daniel Ellis
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian
Infectious Diseases Research Centre, The
University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jin Gu
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian
Infectious Diseases Research Centre, The
University of Queensland, St Lucia, Queensland 4072, Australia
| | - Stephanie L. Neville
- Department
of Microbiology and Immunology, the Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Jonathan Wilksch
- Department
of Microbiology and Immunology, the Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Adam P. Gunn
- Department
of Microbiology and Immunology, the Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Jonathan J. Whittall
- School of
Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Boštjan Kobe
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian
Infectious Diseases Research Centre, The
University of Queensland, St Lucia, Queensland 4072, Australia
- Institute
for Molecular Bioscience, The University
of Queensland, St Lucia, Queensland 4072, Australia
| | - Evelyne Deplazes
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- School
of Life Sciences, University of Technology
Sydney, Ultimo, New South Wales 2007, Australia
| | - Ulrike Kappler
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian
Infectious Diseases Research Centre, The
University of Queensland, St Lucia, Queensland 4072, Australia
| | - Christopher A. McDevitt
- Department
of Microbiology and Immunology, the Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
4
|
Tanabe TS, Dahl C. HMSS2: An advanced tool for the analysis of sulphur metabolism, including organosulphur compound transformation, in genome and metagenome assemblies. Mol Ecol Resour 2023; 23:1930-1945. [PMID: 37515475 DOI: 10.1111/1755-0998.13848] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
The global sulphur cycle has implications for human health, climate change, biogeochemistry and bioremediation. The organosulphur compounds that participate in this cycle not only represent a vast reservoir of sulphur but are also used by prokaryotes as sources of energy and/or carbon. Closely linked to the inorganic sulphur cycle, it involves the interaction of prokaryotes, eukaryotes and chemical processes. However, ecological and evolutionary studies of the conversion of organic sulphur compounds are hampered by the poor conservation of the relevant pathways and their variation even within strains of the same species. In addition, several proteins involved in the conversion of sulphonated compounds are related to proteins involved in sulphur dissimilation or turnover of other compounds. Therefore, the enzymes involved in the metabolism of organic sulphur compounds are usually not correctly annotated in public databases. To address this challenge, we have developed HMSS2, a profiled Hidden Markov Model-based tool for rapid annotation and synteny analysis of organic and inorganic sulphur cycle proteins in prokaryotic genomes. Compared to its previous version (HMS-S-S), HMSS2 includes several new features. HMM-based annotation is now supported by nonhomology criteria and covers the metabolic pathways of important organosulphur compounds, including dimethylsulphoniopropionate, taurine, isethionate, and sulphoquinovose. In addition, the calculation speed has been increased by a factor of four and the available output formats have been extended to include iTol compatible data sets, and customized sequence FASTA files.
Collapse
Affiliation(s)
- Tomohisa Sebastian Tanabe
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
5
|
Polland L, Rydén H, Su Y, Paulsson M. In vivo gene expression profile of Haemophilus influenzae during human pneumonia. Microbiol Spectr 2023; 11:e0163923. [PMID: 37707456 PMCID: PMC10581191 DOI: 10.1128/spectrum.01639-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/12/2023] [Indexed: 09/15/2023] Open
Abstract
Haemophilus influenzae is a major cause of community-acquired pneumonia. While studied extensively in various laboratory models, less is known about the cell function while inside the human lung. We present the first analysis of the global gene expression of H. influenzae while the bacteria are in the lung during pneumonia (in vivo conditions) and contrast it with bacterial isolates that have been cultured under standard laboratory conditions (in vitro conditions). Patients with pneumonia were recruited from emergency departments and intensive care units during 2018-2020 (n = 102). Lower respiratory samples were collected for bacterial culture and RNA extraction. Patient samples with H. influenzae (n = 8) and colonies from bacterial cultures (n = 6) underwent RNA sequencing. The reads were then pseudo-aligned to core and pan genomes created from 15 reference strains. While bacteria cultured in vitro clustered tightly by principal component analysis of core genome (n = 1067) gene expression, bacteria in the patient samples had more diverse transcriptomic signatures and did not group with their lab-cultured counterparts. In total, 328 core genes were significantly differentially expressed between in vitro and in vivo conditions. The most highly upregulated genes in vivo included tbpA and fbpA, which are involved in the acquisition of iron from transferrin, and the stress response gene msrAB. The biosynthesis of nucleotides/purines and molybdopterin-scavenging processes were also significantly enriched in vivo. In contrast, major metabolic pathways and iron-sequestering genes were downregulated under this condition. In conclusion, extensive transcriptomic differences were found between bacteria while in the human lung and bacteria that were cultured in vitro. IMPORTANCE The human-specific pathogen Haemophilus influenzae is generally not well suited for studying in animal models, and most laboratory models are unlikely to approximate the diverse environments encountered by bacteria in the human airways accurately. Thus, we have examined the global gene expression of H. influenzae during pneumonia. Extensive differences in the global gene expression profiles were found in H. influenzae while in the human lung compared to bacteria that were grown in the laboratory. In contrast, the gene expression profiles of isolates collected from different patients were found to cluster together when grown under the same laboratory conditions. Interesting observations were made of how H. influenzae acquires and uses iron and molybdate, endures oxidative stress, and regulates central metabolism while in the lung. Our results indicate important processes during infection and can guide future research on genes and pathways that are relevant in the pathogenesis of H. influenzae pneumonia.
Collapse
Affiliation(s)
- Linnea Polland
- Infection Medicine, Department of Clinical Sciences Lund, Medical Faculty, Lund University, Lund, Sweden
- Clinical Microbiology, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Hanna Rydén
- Clinical Microbiology, Office for Medical Services, Region Skåne, Lund, Sweden
- Experimental Infection Medicine, Department of Translational Medicine, Medical Faculty, Lund, Sweden
| | - Yi Su
- Infection Medicine, Department of Clinical Sciences Lund, Medical Faculty, Lund University, Lund, Sweden
| | - Magnus Paulsson
- Infection Medicine, Department of Clinical Sciences Lund, Medical Faculty, Lund University, Lund, Sweden
- Clinical Microbiology, Office for Medical Services, Region Skåne, Lund, Sweden
| |
Collapse
|
6
|
Nasreen M, Nair RP, McEwan AG, Kappler U. The Peptide Methionine Sulfoxide Reductase (MsrAB) of Haemophilus influenzae Repairs Oxidatively Damaged Outer Membrane and Periplasmic Proteins Involved in Nutrient Acquisition and Virulence. Antioxidants (Basel) 2022; 11:antiox11081557. [PMID: 36009276 PMCID: PMC9404787 DOI: 10.3390/antiox11081557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Sulfoxide-damage repair mechanisms are emerging as essential for the virulence of bacterial pathogens, and in the human respiratory pathogen Haemophilus influenzae the periplasmic MsrAB peptide methionine sulfoxide reductase is necessary for resistance to reactive chlorine species such as hypochlorite. Additionally, this enzyme has a role in modulating the host immune response to infection. Here, we have analysed the enzymatic properties of MsrAB, which revealed that both domains of the protein are catalytically active, with the turnover number of the MsrA domain being 50% greater than that for the MsrB domain. MsrAB was active with small molecular sulfoxides as well as oxidised calmodulin, and maximal activity was observed at 30°C, a temperature close to that found in the natural niche of H. influenzae, the nasopharynx. Analyses of differential methionine oxidation identified 29 outer membrane and periplasmic proteins that are likely substrates for MsrAB. These included the LldD lactate dehydrogenase and the lipoprotein eP4 that is involved in NAD and hemin metabolism in H. influenzae. Subsequent experiments showed that H. influenzae MsrAB can repair oxidative damage to methionines in purified eP4 with up to 100% efficiency. Our work links MsrAB to the maintenance of different adhesins and essential metabolic processes in the H. influenzae, such as NAD metabolism and access to L-lactate, which is a key growth substrate for H. influenzae during infection.
Collapse
|