1
|
Zhang T, Vďačný P. Deciphering phylogenetic relationships of and delimiting species boundaries within the controversial ciliate genus Conchophthirus using an integrative morpho-evo approach. Mol Phylogenet Evol 2024; 190:107931. [PMID: 37742881 DOI: 10.1016/j.ympev.2023.107931] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
The phylum Ciliophora (ciliates) comprises about 2600 symbiotic and over 5500 free-living species. The inclusion of symbiotic ciliates in phylogenetic analyses often challenges traditional classification frameworks due to their morphological adaptions to the symbiotic lifestyle. Conchophthirus is such a controversial obligate endocommensal genus whose affinities to other symbiotic and free-living scuticociliates are still poorly understood. Using uni- and multivariate morphometrics as well as 2D-based molecular and phylogenetic analyses, we attempted to test for the monophyly of Conchophthirus, study the boundaries of Conchophthirus species isolated from various bivalves at mesoscale, and reveal the phylogenetic relationships of Conchophthirus to other scuticociliates. Multidimensional analyses of morphometric and cell geometric data generated the same homogenous clusters, as did phylogenetic analyses based on 144 new sequences of two mitochondrial and five nuclear molecular markers. Conchophthirus is not closely related to 'core' scuticociliates represented by the orders Pleuronematida and Philasterida, as assumed in the past using morphological data. Nuclear and mitochondrial markers consistently showed the free-living Dexiotricha and the mouthless endosymbiotic Haptophrya to be the nearest relatives of Conchophthirus. These three highly morphologically and ecologically dissimilar genera represent an orphan clade from the early radiation of scuticociliates in molecular phylogenies.
Collapse
Affiliation(s)
- Tengyue Zhang
- Department of Zoology, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Peter Vďačný
- Department of Zoology, Comenius University in Bratislava, 842 15 Bratislava, Slovak Republic.
| |
Collapse
|
2
|
Zhang T, Vďačný P. Re-discovery and novel contributions to morphology and multigene phylogeny of Protospirella mazurica (Raabe, 1968) Aescht, 2001 (Ciliophora: Pleuronematida), an obligate symbiont of the river nerite Theodoxus fluviatilis Linnaeus, 1758 (Mollusca: Gastropoda). Eur J Protistol 2023; 88:125956. [PMID: 36805973 DOI: 10.1016/j.ejop.2023.125956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Although the river nerite Theodoxus fluviatilis (Gastropoda: Neritimorpha) has an exceptionally broad geographical and ecological distribution, it carries only four ciliate species: Hypocomella quatuor, Protospirella mazurica, Scyphidia sp., and Trichodina baltica. After more than a half-century gap, we re-discovered P. mazurica in a Danubian population of T. fluviatilis (haplotypes F31 and F34) and characterized it using an integrative morpho-molecular approach. Protospirella mazurica is distinguished by (i) a small, elongate-ellipsoidal to ovoidal body, (ii) a broadly ellipsoidal macronucleus accompanied by a single globular micronucleus, (iii) a subterminal contractile vacuole, (iv) about 24 somatic kineties, (v) thigmotactic ciliature composed of about 10 kineties shortened posteriorly to form a parenthetical system, and (vi) a long inverted J-shaped paroral membrane associated with three unequally long membranelles. According to the present phylogenetic analyses of two mitochondrial and three nuclear markers, P. mazurica robustly clusters within the order Pleuronematida (Oligohymenophorea: Scuticociliatia) along with other symbiotic members of the families Hemispeiridae and Thigmophryidae as well as free-living representatives of the paraphyletic family Cyclidiidae. In light of the present phylogenetic analyses, we consider the family Ancistridae to be a junior synonym of the family Hemispeiridae, which collates 14 genera in our classification framework.
Collapse
Affiliation(s)
- Tengyue Zhang
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Peter Vďačný
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.
| |
Collapse
|
3
|
Zhang T, Rurik I, Vďačný P. A holistic approach to inventory the diversity of mobilid ciliates (Protista: Ciliophora: Peritrichia). ORG DIVERS EVOL 2023. [DOI: 10.1007/s13127-022-00601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Obert T, Zhang T, Rurik I, Vďačný P. First molecular evidence of hybridization in endosymbiotic ciliates (Protista, Ciliophora). Front Microbiol 2022; 13:1067315. [PMID: 36569075 PMCID: PMC9772525 DOI: 10.3389/fmicb.2022.1067315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Hybridization is an important evolutionary process that can fuel diversification via formation of hybrid species or can lead to fusion of previously separated lineages by forming highly diverse species complexes. We provide here the first molecular evidence of hybridization in wild populations of ciliates, a highly diverse group of free-living and symbiotic eukaryotic microbes. The impact of hybridization was studied on the model of Plagiotoma, an obligate endosymbiont of the digestive tube of earthworms, using split decomposition analyses and species networks, 2D modeling of the nuclear rRNA molecules and compensatory base change analyses as well as multidimensional morphometrics. Gene flow slowed down and eventually hampered the diversification of Lumbricus-dwelling plagiotomids, which collapsed into a single highly variable biological entity, the P. lumbrici complex. Disruption of the species boundaries was suggested also by the continuum of morphological variability in the phenotypic space. On the other hand, hybridization conspicuously increased diversity in the nuclear rDNA cistron and somewhat weakened the host structural specificity of the P. lumbrici complex, whose members colonize a variety of phylogenetically closely related anecic and epigeic earthworms. By contrast, another recorded species, P. aporrectodeae sp. n., showed no signs of introgression, no variability in the rDNA cistron, and very high host specificity. These contrasting eco-evolutionary patterns indicate that hybridization might decrease the alpha-diversity by dissolving species boundaries, weaken the structural host specificity by broadening ecological amplitudes, and increase the nuclear rDNA variability by overcoming concerted evolution within the P. lumbrici species complex.
Collapse
Affiliation(s)
| | | | | | - Peter Vďačný
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
5
|
Rataj M, Zhang T, Vd’ačný P. Nuclear and Mitochondrial SSU rRNA Genes Reveal Hidden Diversity of Haptophrya Endosymbionts in Freshwater Planarians and Challenge Their Traditional Classification in Astomatia. Front Microbiol 2022; 13:830951. [PMID: 35495648 PMCID: PMC9048206 DOI: 10.3389/fmicb.2022.830951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Like many other aquatic animals, freshwater planarians have also become partners of symbiotic ciliates from the class Oligohymenophorea. In the present study, we explored the hidden diversity and addressed the questionable systematic position of mouthless obligatory gut endosymbionts of freshwater planarians, using the nuclear and mitochondrial SSU rRNA genes. Although all isolated ciliates morphologically corresponded to a single species, molecular analyses suggested the existence of three genetically distinct entities: Haptophrya planariarum, Haptophrya dugesiarum nov. spec., and Haptophrya schmidtearum nov. spec. The two former species share the same planarian host, which indicates a speciation model involving one duplication event without host switching. Such a diversification pattern was recognized also in astome ciliates inhabiting megascolecid and glossoscolecid earthworms. The present multi-gene phylogenies along with the secondary structure of the mitochondrial 16S rRNA molecule, however, challenge the traditional classification of Haptophrya within the subclass Astomatia. Haptophrya very likely evolved from an orphan scuticociliate lineage by the loss of oral apparatus and by the transformation of the thigmotactic field into an adhesive sucker. Since astomy evolved multiple times independently within the Oligohymenophorea, the loss of cell mouth cannot be used as a sole argument for the assignment of Haptophrya to the Astomatia anymore.
Collapse
Affiliation(s)
| | | | - Peter Vd’ačný
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
6
|
Rataj M, Vďačný P. Putative ITS2 secondary structure model and multi‐gene phylogenies of tetrahymenids (Ciliophora, Hymenostomatia) parasitizing planarians and crayfish worms. ZOOL SCR 2022. [DOI: 10.1111/zsc.12528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Matej Rataj
- Department of Zoology Faculty of Natural Sciences Comenius University in Bratislava Bratislava Slovakia
| | - Peter Vďačný
- Department of Zoology Faculty of Natural Sciences Comenius University in Bratislava Bratislava Slovakia
| |
Collapse
|
7
|
Zhang T, Shao C, Zhang T, Song W, Vd’ačný P, Al-Farraj SA, Wang Y. Multi-Gene Phylogeny of the Ciliate Genus Trachelostyla (Ciliophora, Hypotrichia), With Integrative Description of Two Species, Trachelostyla multinucleata Spec. nov. and T. pediculiformis (Cohn, 1866). Front Microbiol 2022; 12:775570. [PMID: 35178037 PMCID: PMC8844511 DOI: 10.3389/fmicb.2021.775570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Many hypotrich genera, including Trachelostyla, are taxonomically challenging and in a need of integrative revision. Using morphological data, molecular phylogenetic analyses, and internal transcribed spacer 2 (ITS2) secondary structures, we attempt to cast more light on species relationships within the genus Trachelostyla. The present multifaceted approach reveals that (1) a large-sized species with numerous macronuclear nodules, isolated from sandy littoral sediments in southern China, is new to science and is endowed here with a name, T. multinucleata spec. nov.; (2) two other Chinese populations previously identified as T. pediculiformis represent undescribed species; and (3) multigene phylogeny is more robust than single-gene trees, recovering the monophyly of the genus Trachelostyla with high bootstrap frequency. Additionally, ITS2 secondary structures and the presence of compensatory base changes in helices A and B indicate the presence of four distinct taxa within the molecularly studied members of the genus Trachelostyla. Molecular data are more suitable for delimitation of Trachelostyla species than morphological characters as interspecific pairwise genetic distances of small subunit (18S) rDNA, ITS1-5.8S-ITS2, and large subunit (28S) rDNA sequences do not overlap, whereas ranges of multiple morphometric features might transcend species boundaries.
Collapse
Affiliation(s)
- Tengyue Zhang
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Chen Shao
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Tengteng Zhang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Weibo Song
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Peter Vd’ačný
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Saleh A. Al-Farraj
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Yurui Wang
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
8
|
Multiple independent losses of cell mouth in phylogenetically distant endosymbiotic lineages of oligohymenophorean ciliates: A lesson from Clausilocola. Mol Phylogenet Evol 2021; 166:107310. [PMID: 34506949 DOI: 10.1016/j.ympev.2021.107310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 01/27/2023]
Abstract
The cell mouth is a property of the vast majority of free-living and endosymbiotic/epibiotic ciliates of the class Oligohymenophorea. Cytostome, however, naturally absents in the whole endosymbiotic subclass Astomatia and was naturally or experimentally lost in a few members of the subclass Hymenostomatia. This poses a question of how homoplastic might be the lack of oral structures in the oligohymenophorean evolution. To address this question, we used two mitochondrial genes, five nuclear markers, and detailed morphological data from an enigmatic mouthless ciliate, Clausilocola apostropha, which we re-discovered after more than half of a century. According to the present phylogenetic analyses, astomy evolved at least three times independently and in different time frames of the oligohymenophorean phylogeny, ranging from the Paleozoic to the Cenozoic period. Mouthless endosymbionts inhabiting mollusks (represented by Clausilocola), planarians (Haptophrya), and annelids ('core' astomes) never clustered together. Haptophrya grouped with the scuticociliate genus Conchophthirus, 'core' astomes were placed in a sister position to the scuticociliate orders Philasterida and Pleuronematida, and Clausilocola was robustly nested within the hymenostome family Tetrahymenidae. The tetrahymenid origin of Clausilocola is further corroborated by the existence of mouthless Tetrahymena mutants and the huge phenotypic plasticity in the cytostome size in tetrahymenids.
Collapse
|