1
|
Schwedt I, Schöne K, Eckert M, Pizzinato M, Winkler L, Knotkova B, Richts B, Hau JL, Steuber J, Mireles R, Noda-Garcia L, Fritz G, Mittelstädt C, Hertel R, Commichau FM. The low mutational flexibility of the EPSP synthase in Bacillus subtilis is due to a higher demand for shikimate pathway intermediates. Environ Microbiol 2023; 25:3604-3622. [PMID: 37822042 DOI: 10.1111/1462-2920.16518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Glyphosate (GS) inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase that is required for aromatic amino acid, folate and quinone biosynthesis in Bacillus subtilis and Escherichia coli. The inhibition of the EPSP synthase by GS depletes the cell of these metabolites, resulting in cell death. Here, we show that like the laboratory B. subtilis strains also environmental and undomesticated isolates adapt to GS by reducing herbicide uptake. Although B. subtilis possesses a GS-insensitive EPSP synthase, the enzyme is strongly inhibited by GS in the native environment. Moreover, the B. subtilis EPSP synthase mutant was only viable in rich medium containing menaquinone, indicating that the bacteria require a catalytically efficient EPSP synthase under nutrient-poor conditions. The dependency of B. subtilis on the EPSP synthase probably limits its evolvability. In contrast, E. coli rapidly acquires GS resistance by target modification. However, the evolution of a GS-resistant EPSP synthase under non-selective growth conditions indicates that GS resistance causes fitness costs. Therefore, in both model organisms, the proper function of the EPSP synthase is critical for the cellular viability. This study also revealed that the uptake systems for folate precursors, phenylalanine and tyrosine need to be identified and characterized in B. subtilis.
Collapse
Affiliation(s)
- Inge Schwedt
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Kerstin Schöne
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Maike Eckert
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Manon Pizzinato
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Laura Winkler
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Barbora Knotkova
- Department of General Microbiology, Institute of Microbiology and Genetics, GZMB, Georg-August University of Göttingen, Göttingen, Germany
| | - Björn Richts
- Department of General Microbiology, Institute of Microbiology and Genetics, GZMB, Georg-August University of Göttingen, Göttingen, Germany
| | - Jann-Louis Hau
- FG Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Julia Steuber
- FG Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Raul Mireles
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, Israel
| | - Lianet Noda-Garcia
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, Israel
| | - Günter Fritz
- FG Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Carolin Mittelstädt
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Robert Hertel
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Fabian M Commichau
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| |
Collapse
|
2
|
Stebegg R, Schmetterer G, Rompel A. Heterotrophy among Cyanobacteria. ACS OMEGA 2023; 8:33098-33114. [PMID: 37744813 PMCID: PMC10515406 DOI: 10.1021/acsomega.3c02205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/10/2023] [Indexed: 09/26/2023]
Abstract
Cyanobacteria have been studied in recent decades to investigate the principle mechanisms of plant-type oxygenic photosynthesis, as they are the inventors of this process, and their cultivation and research is much easier compared to land plants. Nevertheless, many cyanobacterial strains possess the capacity for at least some forms of heterotrophic growth. This review demonstrates that cyanobacteria are much more than simple photoautotrophs, and their flexibility toward different environmental conditions has been underestimated in the past. It summarizes the strains capable of heterotrophy known by date structured by their phylogeny and lists the possible substrates for heterotrophy for each of them in a table in the Supporting Information. The conditions are discussed in detail that cause heterotrophic growth for each strain in order to allow for reproduction of the results. The review explains the importance of this knowledge for the use of new methods of cyanobacterial cultivation, which may be advantageous under certain conditions. It seeks to stimulate other researchers to identify new strains capable of heterotrophy that have not been known so far.
Collapse
Affiliation(s)
- Ronald Stebegg
- Universität Wien, Fakultät für Chemie, Institut für
Biophysikalische Chemie, 1090 Wien, Austria
| | - Georg Schmetterer
- Universität Wien, Fakultät für Chemie, Institut für
Biophysikalische Chemie, 1090 Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für
Biophysikalische Chemie, 1090 Wien, Austria
| |
Collapse
|
3
|
Rath P, Rapp J, Brilisauer K, Braun M, Kolukisaoglu Ü, Forchhammer K, Grond S. Hybrid Chemoenzymatic Synthesis of C7-Sugars for Molecular Evidence of in vivo Shikimate Pathway Inhibition. Chembiochem 2022; 23:e202200241. [PMID: 35508894 PMCID: PMC9401589 DOI: 10.1002/cbic.202200241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 11/22/2022]
Abstract
The design of distinctive chemical synthesis strategies aims for the most efficient routes towards versatile compounds in drug target studies. Here, we establish a powerful hybrid synthetic approach of total chemical and chemoenzymatic synthesis to efficiently obtain various 7‐deoxy‐sedoheptulose (7dSh, 1) analogues, unique C7 sugars, for structure‐activity relationship studies. 7dSh (1) is a rare microbial sugar with in planta herbicidal activity. As natural antimetabolite of 3‐dehydroquinate synthase (DHQS), 7dSh (1) inhibits the shikimate pathway, which is essential for the synthesis of aromatic amino acids in bacteria, fungi, and plants, but absent in mammals. As glyphosate, the most used chemical herbicide faces restrictions worldwide, DHQS has gained more attention as valid target of herbicides and antimicrobial agents. In vitro and in vivo analyses of the C7‐deoxysugars confirm DHQS as enzymatic target, highlight the crucial role of uptake for inhibition and add molecular aspects to target mechanism studies of C7‐sugars as our contribution to global efforts for alternative weed‐control strategies.
Collapse
Affiliation(s)
- Pascal Rath
- Eberhard Karls Universitat Tubingen, Institute of Organic Chemistry, Biomolecluar Chemistry, Auf der Morgenstelle 18, 72076, Tuebingen, GERMANY
| | - Johanna Rapp
- Eberhard Karls Universitat Tubingen, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Auf der Morgenstelle 28, 72076, Tuebingen, GERMANY
| | - Klaus Brilisauer
- Eberhard Karls Universitat Tubingen, Institute of Organic Chemistry, Biomolecular Chemistry, Auf der Morgenstelle 18, 72076, Tuebingen, GERMANY
| | - Marvin Braun
- Eberhard Karls Universitat Tubingen, Center for Plant Molecular Biology (ZMBP), Auf der Morgenstelle 32, 72076, Tuebingen, GERMANY
| | - Üner Kolukisaoglu
- Eberhard Karls Universitat Tubingen, Center for Plant Molecular Biology (ZMBP), Auf der Morgenstelle 32, 72076, Tuebingen, GERMANY
| | - Karl Forchhammer
- Eberhard Karls Universitat Tubingen, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Auf der Morgenstelle 28, 72076, Tuebingen, GERMANY
| | - Stephanie Grond
- Eberhard Karls Universität Tübingen Mathematisch-Naturwissenschaftliche Fakultät: Eberhard Karls Universitat Tubingen Mathematisch-Naturwissenschaftliche Fakultat, Institute of Organic Chemistry, Auf der Morgenstelle 18, 72076, Tübingen, GERMANY
| |
Collapse
|
4
|
Asimakis E, Shehata AA, Eisenreich W, Acheuk F, Lasram S, Basiouni S, Emekci M, Ntougias S, Taner G, May-Simera H, Yilmaz M, Tsiamis G. Algae and Their Metabolites as Potential Bio-Pesticides. Microorganisms 2022; 10:microorganisms10020307. [PMID: 35208762 PMCID: PMC8877611 DOI: 10.3390/microorganisms10020307] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
An increasing human population necessitates more food production, yet current techniques in agriculture, such as chemical pesticide use, have negative impacts on the ecosystems and strong public opposition. Alternatives to synthetic pesticides should be safe for humans, the environment, and be sustainable. Extremely diverse ecological niches and millions of years of competition have shaped the genomes of algae to produce a myriad of substances that may serve humans in various biotechnological areas. Among the thousands of described algal species, only a small number have been investigated for valuable metabolites, yet these revealed the potential of algal metabolites as bio-pesticides. This review focuses on macroalgae and microalgae (including cyanobacteria) and their extracts or purified compounds, that have proven to be effective antibacterial, antiviral, antifungal, nematocides, insecticides, herbicides, and plant growth stimulants. Moreover, the mechanisms of action of the majority of these metabolites against plant pests are thoroughly discussed. The available information demonstrated herbicidal activities via inhibition of photosynthesis, antimicrobial activities via induction of plant defense responses, inhibition of quorum sensing and blocking virus entry, and insecticidal activities via neurotoxicity. The discovery of antimetabolites also seems to hold great potential as one recent example showed antimicrobial and herbicidal properties. Algae, especially microalgae, represent a vast untapped resource for discovering novel and safe biopesticide compounds.
Collapse
Affiliation(s)
- Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30131 Agrinio, Greece;
| | - Awad A. Shehata
- Research and Development Section, PerNaturam GmbH, 56290 Gödenroth, Germany;
| | - Wolfgang Eisenreich
- Bavarian NMR Center—Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, 85748 Garching, Germany;
| | - Fatma Acheuk
- Laboratory for Valorization and Conservation of Biological Resources, Faculty of Sciences, University M’Hamed Bougara of Boumerdes, Boumerdes 35000, Algeria;
| | - Salma Lasram
- Laboratory of Molecular Physiology of Plants, Borj-Cedria Biotechnology Center. BP. 901, Hammam-Lif 2050, Tunisia;
| | - Shereen Basiouni
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany; (S.B.); (H.M.-S.)
| | - Mevlüt Emekci
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Keçiören, Ankara 06135, Turkey;
| | - Spyridon Ntougias
- Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece;
| | - Gökçe Taner
- Department of Bioengineering, Bursa Technical University, Bursa 16310, Turkey;
| | - Helen May-Simera
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany; (S.B.); (H.M.-S.)
| | - Mete Yilmaz
- Department of Bioengineering, Bursa Technical University, Bursa 16310, Turkey;
- Correspondence: (M.Y.); (G.T.)
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30131 Agrinio, Greece;
- Correspondence: (M.Y.); (G.T.)
| |
Collapse
|