1
|
Wu J, Zheng H, Dong Y, Zhao F, Zhai Y, Yang H, Gong W, Hui W, Urano D, Wang J. The conserved transcriptional regulation mechanism of ADH1 gene in Zanthoxylum armatum to waterlogging stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109133. [PMID: 39326225 DOI: 10.1016/j.plaphy.2024.109133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Waterlogging stress negatively affects plant growth and survival. However, the ability of Zanthoxylum armatum, a valuable tree species, to tolerate and adapt to waterlogging stress remains poorly understood. Here we report how alcohol dehydrogenase 1 (ZaADH1) confers waterlogging stress tolerance in Z. armatum. ZaADH1 expression was induced after waterlogging treatment. ZaADH1 overexpression increased waterlogging stress by modulating the metabolite levels of the ADH enzyme, soluble sugar, and trehalose, promoting glycolysis and carbohydrate metabolism. The overexpression of ZaADH1 in Arabidopsis thaliana increased the total plant area and chlorophyll content, thereby increasing resistance to waterlogging stress. Physiological and overexpression transcriptome analyses in A. thaliana indicated that ZaADH1 overexpressing lines generated more carbohydrates to meet energy demands, employing a "static" strategy to increase tolerance to waterlogging stress, which confirms the conservation of the ADH1 response to waterlogging stress and represents a potential crucial measure for improving waterlogging tolerance in Z. armatum.
Collapse
Affiliation(s)
- Jiaojiao Wu
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China; College of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, China; Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | - Hao Zheng
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yating Dong
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | - Feiyan Zhao
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yafang Zhai
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Hua Yang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Wei Gong
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China.
| | - Wenkai Hui
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China.
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore.
| | - Jingyan Wang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
2
|
Gogile A, Knierim D, Margaria P, Menzel W, Abide M, Kebede M, Kidanemariam D, Abraham A. White yam (Dioscorea rotundata) plants exhibiting virus-like symptoms are co-infected with a new potyvirus and a new crinivirus in Ethiopia. Virus Genes 2024; 60:423-433. [PMID: 38833150 DOI: 10.1007/s11262-024-02077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
White yam (Dioscorea rotundata) plants collected from farmers' fields and planted at the Areka Agricultural Research Center, Southern Ethiopia, displayed mosaic, mottling, and chlorosis symptoms. To determine the presence of viral pathogens, an investigation for virome characterization was conducted by Illumina high-throughput sequencing. The bioinformatics analysis allowed the assembly of five viral genomes, which according to the ICTV criteria were assigned to a novel potyvirus (3 genome sequences) and a novel crinivirus (2 genome sequences). The potyvirus showed ~ 66% nucleotide (nt) identity in the polyprotein sequence to yam mosaic virus (NC004752), clearly below the demarcation criteria of 76% identity. For the crinivirus, the RNA 1 and RNA 2 shared the highest sequence identity to lettuce chlorosis virus, and alignment of the aa sequence of the RdRp, CP and HSP70h (~ 49%, 45% and 76% identity), considered for the demarcation criteria, revealed the finding of a novel virus species. The names Ethiopian yam virus (EYV) and Yam virus 1 (YV-1) are proposed for the two tentative new virus species.
Collapse
Affiliation(s)
- Ashebir Gogile
- Department of Biotechnology, College of Natural and Applied Science, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.
- Department of Biology, College of Natural and Computational Sciences, Wolaita Sodo University, Wolaita Sodo, Ethiopia.
| | - Dennis Knierim
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7 B, 38124, Brunswick, Germany
| | - Paolo Margaria
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7 B, 38124, Brunswick, Germany
| | - Wulf Menzel
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7 B, 38124, Brunswick, Germany
| | - Mereme Abide
- Department of Biotechnology, College of Natural and Applied Science, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Misrak Kebede
- Department of Biotechnology, College of Natural and Applied Science, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Dawit Kidanemariam
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Adane Abraham
- Department of Biotechnology, College of Natural and Applied Science, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana.
| |
Collapse
|
3
|
Alcalá Briseño RI, Batuman O, Brawner J, Cuellar WJ, Delaquis E, Etherton BA, French-Monar RD, Kreuze JF, Navarrete I, Ogero K, Plex Sulá AI, Yilmaz S, Garrett KA. Translating virome analyses to support biosecurity, on-farm management, and crop breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1056603. [PMID: 36998684 PMCID: PMC10043385 DOI: 10.3389/fpls.2023.1056603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
Virome analysis via high-throughput sequencing (HTS) allows rapid and massive virus identification and diagnoses, expanding our focus from individual samples to the ecological distribution of viruses in agroecological landscapes. Decreases in sequencing costs combined with technological advances, such as automation and robotics, allow for efficient processing and analysis of numerous samples in plant disease clinics, tissue culture laboratories, and breeding programs. There are many opportunities for translating virome analysis to support plant health. For example, virome analysis can be employed in the development of biosecurity strategies and policies, including the implementation of virome risk assessments to support regulation and reduce the movement of infected plant material. A challenge is to identify which new viruses discovered through HTS require regulation and which can be allowed to move in germplasm and trade. On-farm management strategies can incorporate information from high-throughput surveillance, monitoring for new and known viruses across scales, to rapidly identify important agricultural viruses and understand their abundance and spread. Virome indexing programs can be used to generate clean germplasm and seed, crucial for the maintenance of seed system production and health, particularly in vegetatively propagated crops such as roots, tubers, and bananas. Virome analysis in breeding programs can provide insight into virus expression levels by generating relative abundance data, aiding in breeding cultivars resistant, or at least tolerant, to viruses. The integration of network analysis and machine learning techniques can facilitate designing and implementing management strategies, using novel forms of information to provide a scalable, replicable, and practical approach to developing management strategies for viromes. In the long run, these management strategies will be designed by generating sequence databases and building on the foundation of pre-existing knowledge about virus taxonomy, distribution, and host range. In conclusion, virome analysis will support the early adoption and implementation of integrated control strategies, impacting global markets, reducing the risk of introducing novel viruses, and limiting virus spread. The effective translation of virome analysis depends on capacity building to make benefits available globally.
Collapse
Affiliation(s)
- Ricardo I. Alcalá Briseño
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Global Food Systems Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Plant Pathology Department, Oregon State University, Corvallis, OR, United States
| | - Ozgur Batuman
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Southwest Florida Research and Education Center (SWFREC), Immokalee, FL, United States
| | - Jeremy Brawner
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
| | - Wilmer J. Cuellar
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Erik Delaquis
- International Center for Tropical Agriculture (CIAT), Vientiane, Laos
| | - Berea A. Etherton
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Global Food Systems Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | | | - Jan F. Kreuze
- Crop and System Sciences Division, International Potato Center (CIP), Lima, Peru
| | - Israel Navarrete
- Crop and System Sciences Division, International Potato Center (CIP), Quito, Ecuador
| | - Kwame Ogero
- Crop and System Sciences Division, International Potato Center (CIP), Mwanza, Tanzania
| | - Aaron I. Plex Sulá
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Global Food Systems Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Salih Yilmaz
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Southwest Florida Research and Education Center (SWFREC), Immokalee, FL, United States
| | - Karen A. Garrett
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Global Food Systems Institute, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Liang X, Mei S, Yu H, Zhang S, Wu J, Cao M. Mixed infection of an emaravirus, a crinivirus, and a begomovirus in Pueraria lobata (Willd) Ohwi. Front Microbiol 2022; 13:926724. [PMID: 36246248 PMCID: PMC9557060 DOI: 10.3389/fmicb.2022.926724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Pueraria lobata (Willd) (Pueraria montana var. lobata (Willd.) Maesen & S. M. Almeida ex Sanjappa & Predeep) is an important herbal medicine used in many countries. In P. lobata plants showing symptoms of mosaic, yellow spots, and mottling, mixed infection of new viruses provisionally named Pueraria lobata-associated emaravirus (PloAEV, genus Emaravirus), Pueraria lobata-associated crinivirus (PloACV, genus Crinivirus), and isolate CQ of the previously reported kudzu mosaic virus (KuMV-CQ, genus Begomovirus) was confirmed through high-throughput sequencing. PloAEV has five RNA segments, encoding a putative RNA-dependent RNA polymerase, glycoprotein precursor, nucleocapsid protein, movement protein, and P5, respectively. PloACV has two RNA segments, encoding 11 putative proteins. Only PloAEV could be mechanically transmitted from mixed infected symptomatic kudzu to Nicotiana benthamiana plants. All three viruses were detected in 35 symptomatic samples collected from five different growing areas, whereas no viruses were detected in 21 non-symptomatic plants, suggesting a high association between these three viruses. Thus, this study provides new knowledge on the diversity and molecular characteristics of viruses in P. lobata plants affected by the viral disease.
Collapse
|
5
|
Hui W, Fan J, Liu X, Zhao F, Saba T, Wang J, Wu A, Zhang X, Zhang J, Zhong Y, Chen G, Gong W. Integrated transcriptome and plant growth substance profiles to identify the regulatory factors involved in floral sex differentiation in Zanthoxylum armatum DC. FRONTIERS IN PLANT SCIENCE 2022; 13:976338. [PMID: 36119602 PMCID: PMC9479546 DOI: 10.3389/fpls.2022.976338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Zanthoxylum armatum is a prominent plant for food industries. Its male flowers often occur in gynogenesis plants; however, the potential mechanism remains poorly understood. Herein, a total of 26 floral sex differentiation stages were observed to select four vital phases to reveal key factors by using RNA-seq, phytohormones and carbohydrates investigation. The results showed that a selective abortion of stamen or pistil primordia could result in the floral sex differentiation in Z. armatum. Carbohydrates might collaborate with cytokinin to effect the male floral differentiation, whereas female floral differentiation was involved in SA, GA1, and ABA biosynthesis and signal transduction pathways. Meanwhile, these endogenous regulators associated with reproductive growth might be integrated into ABCDE model to regulate the floral organ differentiation in Z. armatum. Furthermore, the 21 crucial candidates were identified in co-expression network, which would contribute to uncovering their roles in floral sex differentiation of Z. armatum in further studies. To the best of our knowledge, this study was the first comprehensive investigation to link floral sex differentiation with multi-level endogenous regulatory factors in Z. armatum. It also provided new insights to explore the regulatory mechanism of floral sex differentiation, which would be benefited to cultivate high-yield varieties in Z. armatum.
Collapse
Affiliation(s)
- Wenkai Hui
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Jiangtao Fan
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xianzhi Liu
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Feiyan Zhao
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tasheen Saba
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Jingyan Wang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Aimin Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xuebin Zhang
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Junli Zhang
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Yu Zhong
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Gang Chen
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Wei Gong
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Dong Z, Zhao X, Liu J, Zhan B, Li S. Detection and Simultaneous Differentiation of Three Co-infected Viruses in Zanthoxylum armatum. PLANTS 2022; 11:plants11091242. [PMID: 35567243 PMCID: PMC9100190 DOI: 10.3390/plants11091242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Green Sichuan pepper (Zanthoxylum armatum) is an important economic fruit crop, which is widely planted in the southwest region of China. Recently, a serious disease, namely flower yellowing disease (FYD), broke out, and the virus of green Sichuan pepper nepovirus (GSPNeV) was identified to be highly correlated with the viral symptoms. Meanwhile, green Sichuan pepper idaeovirus (GSPIV) and green Sichuan pepper enamovirus (GSPEV) were also common viruses infecting green pepper. In our research, specific primers were designed according to the reported sequences of the three viruses, and a multiplex reverse transcription-polymerase chain reaction (RT-PCR) method for the simultaneous detection of GSPNeV, GSPIV, and GSPEV was established. The annealing temperature, extension time, and cycle number affecting the multiplex RT-PCR reaction were adjusted and optimized. Sensitivity analysis showed that the system could detect the three viruses simultaneously from the complementary deoxyribonucleic acid (cDNA) samples diluted by 10−3. The results of the ten samples detected by the multiplex RT-PCR system were consistent with the results of a single PCR, indicating that the method can be successfully used for rapid detection of field samples.
Collapse
Affiliation(s)
- Zhenfei Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100107, China; (X.Z.); (J.L.)
| | - Xiaoli Zhao
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100107, China; (X.Z.); (J.L.)
| | - Junjie Liu
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100107, China; (X.Z.); (J.L.)
| | - Binhui Zhan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Correspondence: (B.Z.); (S.L.)
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Correspondence: (B.Z.); (S.L.)
| |
Collapse
|