1
|
Huang C, Cao W, Zhou S, Deng Y. Biogenesis mechanisms, regulatory strategies, and applications of bacterial extracellular vesicles. Crit Rev Biotechnol 2025:1-17. [PMID: 40368580 DOI: 10.1080/07388551.2025.2496300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/29/2024] [Accepted: 02/08/2025] [Indexed: 05/16/2025]
Abstract
Bacterial extracellular vesicles (EVs) are produced by both Gram-negative and Gram-positive bacteria. These EVs are composed of lipid bilayers and various components derived from parent bacteria, including proteins, lipids, and nucleic acids. Previous studies have indicated the significant role of bacterial EVs in interactions between bacteria and between bacteria and hosts. Moreover, bacterial EVs are emerging as promising delivery vectors capable of transporting drug molecules over long distances to tissues. Therefore, understanding the biogenesis of bacterial EVs and how to regulate their production holds great importance for expanding their applications. In this review, we provide an overview of bacterial EVs, especially focusing on the distinct mechanisms of EVs biogenesis and the regulation of EVs production in both Gram-negative and Gram-positive bacteria. Additionally, we discuss various methods for cargos loading into bacteria EVs, as well as their diverse applications in vaccines, cancer therapy, and drug delivery. We anticipate that this review will advance the field of bacterial EVs, contributing to both the enhancement of existing applications and the emergence of novel applications.
Collapse
Affiliation(s)
- Chao Huang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Wenyan Cao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Shenghu Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Yu Deng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Zhao X, Wei Y, Bu Y, Ren X, Dong Z. Review on bacterial outer membrane vesicles: structure, vesicle formation, separation and biotechnological applications. Microb Cell Fact 2025; 24:27. [PMID: 39833809 PMCID: PMC11749425 DOI: 10.1186/s12934-025-02653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Outer membrane vesicles (OMVs), shed by Gram-negative bacteria, are spherical nanostructures that play a pivotal role in bacterial communication and host-pathogen interactions. Comprising an outer membrane envelope and encapsulating a variety of bioactive molecules from their progenitor bacteria, OMVs facilitate material and informational exchange. This review delves into the recent advancements in OMV research, providing a comprehensive overview of their structure, biogenesis, and mechanisms of vesicle formation. It also explores their role in pathogenicity and the techniques for their enrichment and isolation. Furthermore, the review highlights the burgeoning applications of OMVs in the field of biomedicine, emphasizing their potential as diagnostic tools, vaccine candidates, and drug delivery vectors.
Collapse
Affiliation(s)
- Xiaofei Zhao
- Graduate School, Hebei Medical University, Shijiazhuang, China
- Department of Pharmacy, Hebei Key Laboratory of Clinical Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Yusen Wei
- Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Yuqing Bu
- Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Xiaokai Ren
- Graduate School, Hebei Medical University, Shijiazhuang, China
- Department of Pharmacy, Hebei Key Laboratory of Clinical Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Zhanjun Dong
- Graduate School, Hebei Medical University, Shijiazhuang, China.
- Department of Pharmacy, Hebei Key Laboratory of Clinical Pharmacy, Hebei General Hospital, Shijiazhuang, China.
| |
Collapse
|
3
|
Kho K, Cheng T, Buddelmeijer N, Boneca IG. When the Host Encounters the Cell Wall and Vice Versa. Annu Rev Microbiol 2024; 78:233-253. [PMID: 39018459 DOI: 10.1146/annurev-micro-041522-094053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Peptidoglycan (PGN) and associated surface structures such as secondary polymers and capsules have a central role in the physiology of bacteria. The exoskeletal PGN heteropolymer is the major determinant of cell shape and allows bacteria to withstand cytoplasmic turgor pressure. Thus, its assembly, expansion, and remodeling during cell growth and division need to be highly regulated to avoid compromising cell survival. Similarly, regulation of the assembly impacts bacterial cell shape; distinct shapes enhance fitness in different ecological niches, such as the host. Because bacterial cell wall components, in particular PGN, are exposed to the environment and unique to bacteria, these have been coopted during evolution by eukaryotes to detect bacteria. Furthermore, the essential role of the cell wall in bacterial survival has made PGN an important signaling molecule in the dialog between host and microbes and a target of many host responses. Millions of years of coevolution have resulted in a pivotal role for PGN fragments in shaping host physiology and in establishing a long-lasting symbiosis between microbes and the host. Thus, perturbations of this dialog can lead to pathologies such as chronic inflammatory diseases. Similarly, pathogens have devised sophisticated strategies to manipulate the system to enhance their survival and growth.
Collapse
Affiliation(s)
- Kelvin Kho
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Thimoro Cheng
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Nienke Buddelmeijer
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Ivo G Boneca
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| |
Collapse
|
4
|
Xuan G, Lu D, Lin H, Wang Y, Wang J. Outer Membrane Vesicle Production by Escherichia coli Enhances Its Defense against Phage Infection. Microorganisms 2024; 12:1836. [PMID: 39338510 PMCID: PMC11433858 DOI: 10.3390/microorganisms12091836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Several studies have investigated the multifunctional characteristics of outer membrane vesicles (OMVs), but research on their role in mediating phage-bacteria interactions is limited. Employing Escherichia coli as a model, we engineered a mutant strain overproducing OMVs for protective experiments against phage infections. The addition of exogenous OMVs proved highly effective in safeguarding the bacterial host against various phages, mitigating predatory threats. Screening for phage-resistant strains and adsorption experiments revealed that inhibiting phage adsorption is a crucial pathway through which OMVs protect against phage predation. Although OMVs conferred tolerance to the phage-sensitive strains (those easily infected by phages), they could not restore the phage-resistant strains (those that effectively resist phage infection) to a sensitive phenotype. This study provides valuable insights for the future development of novel biotechnological approaches aimed at utilizing OMVs to protect fermentative strains and reduce the risk of phage contamination.
Collapse
Affiliation(s)
- Guanhua Xuan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Di Lu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Hong Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Yinfeng Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Jingxue Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| |
Collapse
|
5
|
Ojima Y, Toda K, Sawabe T, Kumazoe Y, Tahara YO, Miyata M, Azuma M. Budding and explosive membrane vesicle production by hypervesiculating Escherichia coli strain Δ rodZ. Front Microbiol 2024; 15:1400434. [PMID: 38966389 PMCID: PMC11222570 DOI: 10.3389/fmicb.2024.1400434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
Escherichia coli produces extracellular vesicles called outer membrane vesicles. In this study, we investigated the mechanism underlying the hypervesiculation of deletion mutant ΔrodZ of E. coli. RodZ forms supramolecular complexes with actin protein MreB and peptidoglycan (PG) synthase, and plays an important role in determining the cell shape. Because mreB is an essential gene, an expression-repressed strain (mreB R3) was constructed using CRISPRi, in which the expression of mreB decreased to 20% of that in the wild-type (WT) strain. In shaken-flask culture, the ΔrodZ strain produced >50 times more vesicles than the WT strain. The mreB-repressed strain mreB R3 showed eightfold higher vesicle production than the WT. ΔrodZ and mreB R3 cells were observed using quick-freeze replica electron microscopy. As reported in previous studies, ΔrodZ cells were spherical (WT cells are rod-shaped). Some ΔrodZ cells (around 7% in total) had aberrant surface structures, such as budding vesicles and dented surfaces, or curved patterns on the surface. Holes in the PG layer and an increased cell volume were observed for ΔrodZ and mreB R3 cells compared with the WT. In conditions of osmotic support using sucrose, the OD660 value of the ΔrodZ strain increased significantly, and vesicle production decreased drastically, compared with those in the absence of sucrose. This study first clarified that vesicle production by the E. coli ΔrodZ strain is promoted by surface budding and a burst of cells that became osmotically sensitive because of their incomplete PG structure.
Collapse
Affiliation(s)
- Yoshihiro Ojima
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Kaho Toda
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Tomomi Sawabe
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Yuki Kumazoe
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Yuhei O. Tahara
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Masayuki Azuma
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
6
|
Muñoz-Echeverri LM, Benavides-López S, Geiger O, Trujillo-Roldán MA, Valdez-Cruz NA. Bacterial extracellular vesicles: biotechnological perspective for enhanced productivity. World J Microbiol Biotechnol 2024; 40:174. [PMID: 38642254 PMCID: PMC11032300 DOI: 10.1007/s11274-024-03963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/19/2024] [Indexed: 04/22/2024]
Abstract
Bacterial extracellular vesicles (BEVs) are non-replicative nanostructures released by Gram-negative and Gram-positive bacteria as a survival mechanism and inter- and intraspecific communication mechanism. Due to BEVs physical, biochemical, and biofunctional characteristics, there is interest in producing and using them in developing new therapeutics, vaccines, or delivery systems. However, BEV release is typically low, limiting their application. Here, we provide a biotechnological perspective to enhance BEV production, highlighting current strategies. The strategies include the production of hypervesiculating strains through gene modification, bacteria culture under stress conditions, and artificial vesicles production. We discussed the effect of these production strategies on BEVs types, morphology, composition, and activity. Furthermore, we summarized general aspects of BEV biogenesis, functional capabilities, and applications, framing their current importance and the need to produce them in abundance. This review will expand the knowledge about the range of strategies associated with BEV bioprocesses to increase their productivity and extend their application possibilities.
Collapse
Affiliation(s)
- Laura M Muñoz-Echeverri
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México AP. 70228, Ciudad de México, C.P. 04510, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán CDMX, C.P. 04510, México
| | - Santiago Benavides-López
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México AP. 70228, Ciudad de México, C.P. 04510, México
- Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Edificio B, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán CDMX, C.P. 04510, México
| | - Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca, Morelos, CP 62210, México
| | - Mauricio A Trujillo-Roldán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México AP. 70228, Ciudad de México, C.P. 04510, México
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera, Tijuana-Ensenada, Baja California, 22860, México
| | - Norma A Valdez-Cruz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México AP. 70228, Ciudad de México, C.P. 04510, México.
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera, Tijuana-Ensenada, Baja California, 22860, México.
| |
Collapse
|
7
|
Sawabe T, Ojima Y, Nakagawa M, Sawada T, Tahara YO, Miyata M, Azuma M. Construction and characterization of a hypervesiculation strain of Escherichia coli Nissle 1917. PLoS One 2024; 19:e0301613. [PMID: 38564580 PMCID: PMC10986995 DOI: 10.1371/journal.pone.0301613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Outer membrane vesicles (OMVs) are produced by Gram-negative bacteria and deliver microbial molecules to distant target cells in a host. OMVs secreted by probiotic probiotic strain Escherichia coli Nissle 1917 (EcN) have been reported to induce an immune response. In this study, we aimed to increase the OMV production of EcN. The double gene knockout of mlaE and nlpI was conducted in EcN because the ΔmlaEΔnlpI of experimental strain E. coli K12 showed the highest OMV production in our previous report. The ΔmlaEΔnlpI of EcN showed approximately 8 times higher OMV production compared with the parental (wild-type) strain. Quick-freeze, deep-etch replica electron microscopy revealed that plasmolysis occurred in the elongated ΔmlaEΔnlpI cells and the peptidoglycan (PG) had numerous holes. While these phenomena are similar to the findings for the ΔmlaEΔnlpI of K12, there were more PG holes in the ΔmlaEΔnlpI of EcN than the K12 strain, which were observed not only at the tip of the long axis but also in the whole PG structure. Further analysis clarified that the viability of ΔmlaEΔnlpI of EcN decreased compared with that of the wild-type. Although the amount of PG in ΔmlaEΔnlpI cells was about half of that in wild-type, the components of amino acids in PG did not change in ΔmlaEΔnlpI. Although the viability decreased compared to the wild-type, the ΔmlaEΔnlpI grew in normal culture conditions. The hypervesiculation strain constructed here is expected to be used as an enhanced probiotic strain.
Collapse
Affiliation(s)
- Tomomi Sawabe
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Yoshihiro Ojima
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Mao Nakagawa
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Toru Sawada
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Yuhei O. Tahara
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Masayuki Azuma
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
8
|
Kanno M, Shiota T, Ueno S, Takahara M, Haneda K, Tahara YO, Shintani M, Nakao R, Miyata M, Kimbara K, Futamata H, Tashiro Y. Identification of genes involved in enhanced membrane vesicle formation in Pseudomonas aeruginosa biofilms: surface sensing facilitates vesiculation. Front Microbiol 2023; 14:1252155. [PMID: 38107868 PMCID: PMC10722149 DOI: 10.3389/fmicb.2023.1252155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Membrane vesicles (MVs) are small spherical structures (20-400 nm) produced by most bacteria and have important biological functions including toxin delivery, signal transfer, biofilm formation, and immunomodulation of the host. Although MV formation is enhanced in biofilms of a wide range of bacterial species, the underlying mechanisms are not fully understood. An opportunistic pathogen, Pseudomonas aeruginosa, causes chronic infections that can be difficult to treat due to biofilm formation. Since MVs are abundant in biofilms, can transport virulence factors to the host, and have inflammation-inducing functions, the mechanisms of enhanced MV formation in biofilms needs to be elucidated to effectively treat infections. In this study, we evaluated the characteristics of MVs in P. aeruginosa PAO1 biofilms, and identified factors that contribute to enhanced MV formation. Vesiculation was significantly enhanced in the static culture; MVs were connected to filamentous substances in the biofilm, and separation between the outer and inner membranes and curvature of the membrane were observed in biofilm cells. By screening a transposon mutant library (8,023 mutants) for alterations in MV formation in biofilms, 66 mutants were identified as low-vesiculation strains (2/3 decrease relative to wild type), whereas no mutant was obtained that produced more MVs (twofold increase). Some transposons were inserted into genes related to biofilm formation, including flagellar motility (flg, fli, and mot) and extracellular polysaccharide synthesis (psl). ΔpelAΔpslA, which does not synthesize the extracellular polysaccharides Pel and Psl, showed reduced MV production in biofilms but not in planktonic conditions, suggesting that enhanced vesiculation is closely related to the synthesis of biofilm matrices in P. aeruginosa. Additionally, we found that blebbing occurred during bacterial attachment. Our findings indicate that biofilm-related factors are closely involved in enhanced MV formation in biofilms and that surface sensing facilitates vesiculation. Furthermore, this work expands the understanding of the infection strategy in P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Mizuki Kanno
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Takuya Shiota
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - So Ueno
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Minato Takahara
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Keisuke Haneda
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu, Japan
| | - Yuhei O. Tahara
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Masaki Shintani
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Ryoma Nakao
- Department of Bacteriology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Kazuhide Kimbara
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu, Japan
| | - Hiroyuki Futamata
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Yosuke Tashiro
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu, Japan
- JST PRESTO, Kawaguchi, Japan
| |
Collapse
|
9
|
Ago R, Tahara YO, Yamaguchi H, Saito M, Ito W, Yamasaki K, Kasai T, Okamoto S, Chikada T, Oshima T, Osaka I, Miyata M, Niki H, Shiomi D. Relationship between the Rod complex and peptidoglycan structure in Escherichia coli. Microbiologyopen 2023; 12:e1385. [PMID: 37877652 PMCID: PMC10561026 DOI: 10.1002/mbo3.1385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Peptidoglycan for elongation in Escherichia coli is synthesized by the Rod complex, which includes RodZ. Although various mutant strains of the Rod complex have been isolated, the relationship between the activity of the Rod complex and the overall physical and chemical structures of the peptidoglycan have not been reported. We constructed a RodZ mutant, termed RMR, and analyzed the growth rate, morphology, and other characteristics of cells producing the Rod complexes containing RMR. The growth and morphology of RMR cells were abnormal, and we isolated suppressor mutants from RMR cells. Most of the suppressor mutations were found in components of the Rod complex, suggesting that these suppressor mutations increase the integrity and/or the activity of the Rod complex. We purified peptidoglycan from wild-type, RMR, and suppressor mutant cells and observed their structures in detail. We found that the peptidoglycan purified from RMR cells had many large holes and different compositions of muropeptides from those of WT cells. The Rod complex may be a determinant not only for the whole shape of peptidoglycan but also for its highly dense structure to support the mechanical strength of the cell wall.
Collapse
Affiliation(s)
- Risa Ago
- Department of Life Science, College of ScienceRikkyo UniversityTokyoJapan
| | - Yuhei O. Tahara
- Graduate School of ScienceOsaka Metropolitan UniversityOsakaJapan
- The OMU Advanced Research Center for Natural Science and TechnologyOsaka Metropolitan UniversityOsakaJapan
| | - Honoka Yamaguchi
- Department of Life Science, College of ScienceRikkyo UniversityTokyoJapan
| | - Motoya Saito
- Department of Biotechnology, Faculty of EngineeringToyama Prefectural UniversityImizuToyamaJapan
| | - Wakana Ito
- Department of Biotechnology, Faculty of EngineeringToyama Prefectural UniversityImizuToyamaJapan
| | - Kaito Yamasaki
- Department of Pharmaceutical Engineering, Faculty of EngineeringToyama Prefectural UniversityImizuToyamaJapan
| | - Taishi Kasai
- Department of Life Science, College of ScienceRikkyo UniversityTokyoJapan
| | - Sho Okamoto
- Microbial Physiology Laboratory, Department of Gene Function and PhenomicsNational Institute of GeneticsMishimaShizuokaJapan
| | - Taiki Chikada
- Department of Life Science, College of ScienceRikkyo UniversityTokyoJapan
| | - Taku Oshima
- Department of Biotechnology, Faculty of EngineeringToyama Prefectural UniversityImizuToyamaJapan
| | - Issey Osaka
- Department of Pharmaceutical Engineering, Faculty of EngineeringToyama Prefectural UniversityImizuToyamaJapan
| | - Makoto Miyata
- Graduate School of ScienceOsaka Metropolitan UniversityOsakaJapan
- The OMU Advanced Research Center for Natural Science and TechnologyOsaka Metropolitan UniversityOsakaJapan
| | - Hironori Niki
- Microbial Physiology Laboratory, Department of Gene Function and PhenomicsNational Institute of GeneticsMishimaShizuokaJapan
- Department of GeneticsThe Graduate University for Advanced Studies, SOKENDAIMishimaShizuokaJapan
| | - Daisuke Shiomi
- Department of Life Science, College of ScienceRikkyo UniversityTokyoJapan
| |
Collapse
|
10
|
Fordjour E, Bai Z, Li S, Li S, Sackey I, Yang Y, Liu CL. Improved Membrane Permeability via Hypervesiculation for In Situ Recovery of Lycopene in Escherichia coli. ACS Synth Biol 2023; 12:2725-2739. [PMID: 37607052 DOI: 10.1021/acssynbio.3c00306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Lycopene biosynthesis is frequently hampered by downstream processing hugely due to its inability to be secreted out from the producing chassis. Engineering cell factories can resolve this issue by secreting this hydrophobic compound. A highly permeable E. coli strain was developed for a better release rate of lycopene. Specifically, the heterologous mevalonate pathway and crtEBI genes from Corynebacterium glutamicum were overexpressed in Escherichia coli BL21 (DE3) for lycopene synthesis. To ensure in situ lycopene production, murein lipoprotein, lipoprotein NlpI, inner membrane permease protein, and membrane-anchored protein in TolA-TolQ-TolR were deleted for improved membrane permeability. The final strain, LYC-8, produced 438.44 ± 8.11 and 136.94 ± 1.94 mg/L of extracellular and intracellular lycopene in fed-batch fermentation. Both proteomics and lipidomics analyses of secreted outer membrane vesicles were perfect indicators of hypervesiculation. Changes in the ratio of saturated fatty acids, unsaturated fatty acids, and cyclopropane fatty acids coupled with the branching and acyl chain lengths altered the membrane fatty acid composition. This ensured membrane fluidity and permeability for in situ lycopene release. The combinatorial deletion of these genes altered the cellular morphology. The structural and morphological changes in cell shape, size, and length were associated with changes in the mechanical strength of the cell envelope. The enhanced lycopene production and secretion mediated by improved membrane permeability established a cell lysis-free system for an efficient releasing rate and downstream processing, demonstrating the importance of vesicle-associated membrane permeability in efficient lycopene production.
Collapse
Affiliation(s)
- Eric Fordjour
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhonghu Bai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Sihan Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Shijie Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Isaac Sackey
- Department of Biological Sciences, Faculty of Biosciences, University for Development Studies, P.O. Box TL1350, NT-0272-1946 Tamale, Ghana
| | - Yankun Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Chun-Li Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Outer Membrane Vesicles of Actinobacillus pleuropneumoniae Exert Immunomodulatory Effects on Porcine Alveolar Macrophages. Microbiol Spectr 2022; 10:e0181922. [PMID: 36040198 PMCID: PMC9602539 DOI: 10.1128/spectrum.01819-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Outer membrane vesicles (OMVs) are spontaneously released by Gram-negative bacteria, including Actinobacillus pleuropneumoniae, which causes contagious pleuropneumonia in pigs and leads to considerable economic losses in the swine industry worldwide. A. pleuropneumoniae OMVs have previously been demonstrated to contain Apx toxins and proteases, as well as antigenic proteins. Nevertheless, comprehensive characterizations of their contents and interactions with host immune cells have not been made. Understanding the protein compositions and immunomodulating ability of A. pleuropneumoniae OMVs could help illuminate their biological functions and facilitate the development of OMV-based applications. In the current investigation, we comprehensively characterized the proteome of native A. pleuropneumoniae OMVs. Moreover, we qualitatively and quantitatively compared the OMV proteomes of a wild-type strain and three mutant strains, in which relevant genes were disrupted to increase OMV production and/or produce OMVs devoid of superantigen PalA. Furthermore, the interaction between A. pleuropneumoniae OMVs and porcine alveolar macrophages was also characterized. Our results indicate that native OMVs spontaneously released by A. pleuropneumoniae MIDG2331 appeared to dampen the innate immune responses by porcine alveolar macrophages stimulated by either inactivated or live parent cells. The findings suggest that OMVs may play a role in manipulating the porcine defense during the initial phases of the A. pleuropneumoniae infection. IMPORTANCE Owing to their built-in adjuvanticity and antigenicity, bacterial outer membrane vesicles (OMVs) are gaining increasing attention as potential vaccines for both human and animal use. OMVs released by Actinobacillus pleuropneumoniae, an important respiratory pathogen in pigs, have also been investigated for vaccine development. Our previous studies have shown that A. pleuropneumoniae secretes OMVs containing multiple immunogenic proteins. However, immunization of pigs with these vesicles was not able to relieve the pig lung lesions induced by the challenge with A. pleuropneumoniae, implying the elusive roles that A. pleuropneumoniae OMVs play in host-pathogen interaction. Here, we showed that A. pleuropneumoniae secretes OMVs whose yield and protein content can be altered by the deletion of the nlpI and palA genes. Furthermore, we demonstrate that A. pleuropneumoniae OMVs dampen the immune responses in porcine alveolar macrophages stimulated by A. pleuropneumoniae cells, suggesting a novel mechanism that A. pleuropneumoniae might use to evade host defense.
Collapse
|
12
|
Koh S, Sato M, Yamashina K, Usukura Y, Toyofuku M, Nomura N, Taguchi S. Controllable secretion of multilayer vesicles driven by microbial polymer accumulation. Sci Rep 2022; 12:3393. [PMID: 35233015 PMCID: PMC8888611 DOI: 10.1038/s41598-022-07218-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/14/2022] [Indexed: 11/09/2022] Open
Abstract
Membrane vesicles (MVs) are formed in various microorganisms triggered by physiological and environmental phenomena. In this study, we have discovered that the biogenesis of MV took place in the recombinant cell of Escherichia coli BW25113 strain that intracellularly accumulates microbial polyester, polyhydroxybutyrate (PHB). This discovery was achieved as a trigger of foam formation during the microbial PHB fermentation. The purified MVs were existed as a mixture of outer MVs and outer/inner MVs, revealed by transmission electron microscopy. It should be noted that there was a good correlation between MV formation and PHB production level that can be finely controlled by varying glucose concentrations, suggesting the causal relationship in both supramolecules artificially produced in the microbial platform. Notably, the controllable secretion of MV was governed spatiotemporally through the morphological change of the E. coli cells caused by the PHB intracellular accumulation. Based on a hypothesis of PHB internal-pressure dependent envelope-disorder induced MV biogenesis, here we propose a new Polymer Intracellular Accumulation-triggered system for MV Production (designated "PIA-MVP") with presenting a mechanistic model for MV biogenesis. The PIA-MVP is a promising microbial platform that will provides us with a significance for further study focusing on biopolymer capsulation and cross-membrane transportation for different application purposes.
Collapse
Affiliation(s)
- Sangho Koh
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan.,Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences and Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Michio Sato
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama, Kawasaki, 214-8571, Japan
| | - Kota Yamashina
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences and Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Yuki Usukura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Masanori Toyofuku
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.,Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), 8-1-1 Seikadai, Soraku, Kyoto, 619-0284, Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Nobuhiko Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Seiichi Taguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan. .,Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences and Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan.
| |
Collapse
|
13
|
Aktar S, Okamoto Y, Ueno S, Tahara YO, Imaizumi M, Shintani M, Miyata M, Futamata H, Nojiri H, Tashiro Y. Incorporation of Plasmid DNA Into Bacterial Membrane Vesicles by Peptidoglycan Defects in Escherichia coli. Front Microbiol 2021; 12:747606. [PMID: 34912309 PMCID: PMC8667616 DOI: 10.3389/fmicb.2021.747606] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022] Open
Abstract
Membrane vesicles (MVs) are released by various prokaryotes and play a role in the delivery of various cell-cell interaction factors. Recent studies have determined that these vesicles are capable of functioning as mediators of horizontal gene transfer. Outer membrane vesicles (OMVs) are a type of MV that is released by Gram-negative bacteria and primarily composed of outer membrane and periplasm components; however, it remains largely unknown why DNA is contained within OMVs. Our study aimed to understand the mechanism by which DNA that is localized in the cytoplasm is incorporated into OMVs in Gram-negative bacteria. We compared DNA associated with OMVs using Escherichia coli BW25113 cells harboring the non-conjugative, non-mobilized, and high-copy plasmid pUC19 and its hypervesiculating mutants that included ΔnlpI, ΔrseA, and ΔtolA. Plasmid copy per vesicle was increased in OMVs derived from ΔnlpI, in which peptidoglycan (PG) breakdown and synthesis are altered. When supplemented with 1% glycine to inhibit PG synthesis, both OMV formation and plasmid copy per vesicle were increased in the wild type. The bacterial membrane condition test indicated that membrane permeability was increased in the presence of glycine at the late exponential phase, in which cell lysis did not occur. Additionally, quick-freeze deep-etch and replica electron microscopy observations revealed that outer-inner membrane vesicles (O-IMVs) are formed in the presence of glycine. Thus, two proposed routes for DNA incorporation into OMVs under PG-damaged conditions are suggested. These routes include DNA leakage due to increased membrane permeation and O-IMV formation. Additionally, our findings contribute to a greater understanding of the vesicle-mediated horizontal gene transfer that occurs in nature and the utilization of MVs for DNA cargo.
Collapse
Affiliation(s)
- Sharmin Aktar
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Yuhi Okamoto
- Faculty of Engineering, Shizuoka University, Hamamatsu, Japan
| | - So Ueno
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Yuhei O Tahara
- Graduate School of Science, Osaka City University, Osaka, Japan.,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan
| | | | - Masaki Shintani
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan.,Faculty of Engineering, Shizuoka University, Hamamatsu, Japan.,Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka City University, Osaka, Japan.,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan
| | - Hiroyuki Futamata
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan.,Faculty of Engineering, Shizuoka University, Hamamatsu, Japan.,Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hideaki Nojiri
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yosuke Tashiro
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan.,Faculty of Engineering, Shizuoka University, Hamamatsu, Japan.,Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan.,JST PRESTO, Kawaguchi, Japan
| |
Collapse
|