1
|
Bayar B, Soares R, Nalakath H, Alves A, Paquete CM, Louro RO. Electron transfer in multicentre redox proteins: from fundamentals to extracellular electron transfer. Biosci Rep 2025; 45:1-18. [PMID: 39714013 DOI: 10.1042/bsr20240576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/24/2024] Open
Abstract
Multicentre redox proteins participate in diverse metabolic processes, such as redox shuttling, multielectron catalysis, or long-distance electron conduction. The detail in which these processes can be analysed depends on the capacity of experimental methods to discriminate the multiple microstates that can be populated while the protein changes from the fully reduced to the fully oxidized state. The population of each state depends on the redox potential of the individual centres and on the magnitude of the interactions between the individual redox centres and their neighbours. It also depends on the interactions with binding sites for other ligands, such as protons, giving origin to the redox-Bohr effect. Modelling strategies that match the capacity of experimental methods to discriminate the contributions of individual centres are presented. These models provide thermodynamic and kinetic characterization of multicentre redox proteins. The current state of the art in the characterization of multicentre redox proteins is illustrated using the case of multiheme cytochromes involved in the process of extracellular electron transfer. In this new frontier of biological electron transfer, which can extend over distances that exceed the size of the individual multicentre redox proteins by orders of magnitude, current experimental data are still unable, in most cases, to provide discrimination between incoherent conduction by heme orbitals and coherent band conduction.
Collapse
Affiliation(s)
- Büşra Bayar
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo Soares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
| | - Haris Nalakath
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alexandra Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina M Paquete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
2
|
Zhang H, Jaenecke J, Bishara-Robertson IL, Casadevall C, Redman HJ, Winkler M, Berggren G, Plumeré N, Butt JN, Reisner E, Jeuken LJC. Semiartificial Photosynthetic Nanoreactors for H 2 Generation. J Am Chem Soc 2024; 146:34260-34264. [PMID: 39626075 DOI: 10.1021/jacs.4c12311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A relatively unexplored energy source in synthetic cells is transmembrane electron transport, which like proton and ion transport can be light driven. Here, synthetic cells, called nanoreactors, are engineered for compartmentalized, semiartificial photosynthetic H2 production by a Clostridium beijerinckii [FeFe]-hydrogenase (H2ase). Transmembrane electron transfer into the nanoreactor was enabled by MtrCAB, a multiheme transmembrane protein from Shewanella oneidensis MR-1. On illumination, graphitic nitrogen-doped carbon dots (g-N-CDs) outside the nanoreactor generated and delivered photoenergized electrons to MtrCAB, which transferred these electrons to encapsulated H2ase without requiring redox mediators. Compartmentalized, light-driven H2 production was observed with a turnover frequency (TOFH2ase) of 467 ± 64 h-1 determined in the first 2 h. Addition of the redox mediator methyl viologen (MV) increased TOFH2ase to 880 ± 154 h-1. We hypothesize that the energetically "uphill" electron transfer step from MtrCAB to H2ase ultimately limits the catalytic rate. These nanoreactors provide a scaffold to compartmentalize redox half reactions in semiartificial photosynthesis and inform on the engineering of nanoparticle-microbe hybrid systems for solar-to-chemical conversion.
Collapse
Affiliation(s)
- Huijie Zhang
- Leiden Institute of Chemistry, Leiden University, PO box 9502, 2300 RA Leiden, The Netherlands
| | - Jan Jaenecke
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstrasse 53, 94315 Straubing, Germany
| | | | - Carla Casadevall
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Holly J Redman
- Department of Chemistry-Ångström laboratory, Molecular Biomimetics, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Martin Winkler
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstrasse 53, 94315 Straubing, Germany
| | - Gustav Berggren
- Department of Chemistry-Ångström laboratory, Molecular Biomimetics, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Nicolas Plumeré
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstrasse 53, 94315 Straubing, Germany
| | - Julea N Butt
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR47TJ, United Kingdom
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Lars J C Jeuken
- Leiden Institute of Chemistry, Leiden University, PO box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
3
|
Lockwood CWJ, Nash BW, Newton-Payne SE, van Wonderen JH, Whiting KPS, Connolly A, Sutton-Cook AL, Crook A, Aithal AR, Edwards MJ, Clarke TA, Sachdeva A, Butt JN. Genetic Code Expansion in Shewanella oneidensis MR-1 Allows Site-Specific Incorporation of Bioorthogonal Functional Groups into a c-Type Cytochrome. ACS Synth Biol 2024; 13:2833-2843. [PMID: 39158169 PMCID: PMC11421213 DOI: 10.1021/acssynbio.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Genetic code expansion has enabled cellular synthesis of proteins containing unique chemical functional groups to allow the understanding and modulation of biological systems and engineer new biotechnology. Here, we report the development of efficient methods for site-specific incorporation of structurally diverse noncanonical amino acids (ncAAs) into proteins expressed in the electroactive bacterium Shewanella oneidensis MR-1. We demonstrate that the biosynthetic machinery for ncAA incorporation is compatible and orthogonal to the endogenous pathways of S. oneidensis MR-1 for protein synthesis, maturation of c-type cytochromes, and protein secretion. This allowed the efficient synthesis of a c-type cytochrome, MtrC, containing site-specifically incorporated ncAA in S. oneidensis MR-1 cells. We demonstrate that site-specific replacement of surface residues in MtrC with ncAAs does not influence its three-dimensional structure and redox properties. We also demonstrate that site-specifically incorporated bioorthogonal functional groups could be used for efficient site-selective labeling of MtrC with fluorophores. These synthetic biology developments pave the way to expand the chemical repertoire of designer proteins expressed in S. oneidensis MR-1.
Collapse
Affiliation(s)
- Colin W J Lockwood
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Benjamin W Nash
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Simone E Newton-Payne
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Jessica H van Wonderen
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Keir P S Whiting
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Abigail Connolly
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Alexander L Sutton-Cook
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Archie Crook
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Advait R Aithal
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Marcus J Edwards
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, U.K
| | - Thomas A Clarke
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Amit Sachdeva
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Julea N Butt
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| |
Collapse
|
4
|
van Wonderen JH, Crack JC, Edwards MJ, Clarke TA, Saalbach G, Martins C, Butt JN. Liquid-chromatography mass spectrometry describes post-translational modification of Shewanella outer membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184221. [PMID: 37673350 DOI: 10.1016/j.bbamem.2023.184221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Electrogenic bacteria deliver excess respiratory electrons to externally located metal oxide particles and electrodes. The biochemical basis for this process is arguably best understood for species of Shewanella where the integral membrane complex termed MtrCAB is key to electron transfer across the bacterial outer membranes. A crystal structure was recently resolved for MtrCAB from S. baltica OS185. However, X-ray diffraction did not resolve the N-terminal residues so that the lipidation status of proteins in the mature complex was poorly described. Here we report liquid chromatography mass spectrometry revealing the intact mass values for all three proteins in the MtrCAB complexes purified from Shewanella oneidensis MR-1 and S. baltica OS185. The masses of MtrA and MtrB are consistent with both proteins being processed by Signal Peptidase I and covalent attachment of ten c-type hemes to MtrA. The mass of MtrC is most reasonably interpreted as arising from protein processed by Signal Peptidase II to produce a diacylated lipoprotein containing ten c-type hemes. Our two-step protocol for liquid-chromatography mass spectrometry used a reverse phase column to achieve on-column detergent removal prior to gradient protein resolution and elution. We envisage the method will be capable of simultaneously resolving the intact mass values for multiple proteins in other membrane protein complexes.
Collapse
Affiliation(s)
- Jessica H van Wonderen
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Jason C Crack
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Marcus J Edwards
- School of Biological Sciences, University of East Anglia, , Norwich Research Park, Norwich NR4 7TJ, UK; School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Thomas A Clarke
- School of Biological Sciences, University of East Anglia, , Norwich Research Park, Norwich NR4 7TJ, UK
| | - Gerhard Saalbach
- Proteomics Facility, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Carlo Martins
- Proteomics Facility, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Julea N Butt
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; School of Biological Sciences, University of East Anglia, , Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
5
|
Velasco-Garcia L, Casadevall C. Bioinspired photocatalytic systems towards compartmentalized artificial photosynthesis. Commun Chem 2023; 6:263. [PMID: 38049562 PMCID: PMC10695942 DOI: 10.1038/s42004-023-01069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
Artificial photosynthesis aims to produce fuels and chemicals from simple building blocks (i.e. water and carbon dioxide) using sunlight as energy source. Achieving effective photocatalytic systems necessitates a comprehensive understanding of the underlying mechanisms and factors that control the reactivity. This review underscores the growing interest in utilizing bioinspired artificial vesicles to develop compartmentalized photocatalytic systems. Herein, we summarize different scaffolds employed to develop artificial vesicles, and discuss recent examples where such systems are used to study pivotal processes of artificial photosynthesis, including light harvesting, charge transfer, and fuel production. These systems offer valuable lessons regarding the appropriate choice of membrane scaffolds, reaction partners and spatial arrangement to enhance photocatalytic activity, selectivity and efficiency. These studies highlight the pivotal role of the membrane to increase the stability of the immobilized reaction partners, generate a suitable local environment, and force proximity between electron donor and acceptor molecules (or catalysts and photosensitizers) to increase electron transfer rates. Overall, these findings pave the way for further development of bioinspired photocatalytic systems for compartmentalized artificial photosynthesis.
Collapse
Affiliation(s)
- Laura Velasco-Garcia
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda dels Països Catalans, 16, 43007, Tarragona, Spain
- Department of Physical and Inorganic Chemistry, University Rovira i Virgili (URV), C/ Marcel.lí Domingo, 1, 43007, Tarragona, Spain
| | - Carla Casadevall
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda dels Països Catalans, 16, 43007, Tarragona, Spain.
- Department of Physical and Inorganic Chemistry, University Rovira i Virgili (URV), C/ Marcel.lí Domingo, 1, 43007, Tarragona, Spain.
| |
Collapse
|
6
|
Piper SEH, Casadevall C, Reisner E, Clarke TA, Jeuken LJC, Gates AJ, Butt JN. Photocatalytic Removal of the Greenhouse Gas Nitrous Oxide by Liposomal Microreactors. Angew Chem Int Ed Engl 2022; 61:e202210572. [PMID: 35951464 PMCID: PMC9825952 DOI: 10.1002/anie.202210572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 01/11/2023]
Abstract
Nitrous oxide (N2 O) is a potent greenhouse and ozone-reactive gas for which emissions are growing rapidly due to increasingly intensive agriculture. Synthetic catalysts for N2 O decomposition typically contain precious metals and/or operate at elevated temperatures driving a desire for more sustainable alternatives. Here we demonstrate self-assembly of liposomal microreactors enabling catalytic reduction of N2 O to the climate neutral product N2 . Photoexcitation of graphitic N-doped carbon dots delivers electrons to encapsulated N2 O Reductase enzymes via a lipid-soluble biomolecular wire provided by the MtrCAB protein complex. Within the microreactor, electron transfer from MtrCAB to N2 O Reductase is facilitated by the general redox mediator methyl viologen. The liposomal microreactors use only earth-abundant elements to catalyze N2 O removal in ambient, aqueous conditions.
Collapse
Affiliation(s)
- Samuel E. H. Piper
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Carla Casadevall
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Erwin Reisner
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Thomas A. Clarke
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Lars J. C. Jeuken
- Leiden Institute of ChemistryLeiden UniversityPO Box 95022300 RALeidenThe Netherlands
| | - Andrew J. Gates
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Julea N. Butt
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK,School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| |
Collapse
|
7
|
Piper SEH, Casadevall C, Reisner E, Clarke TA, Jeuken LJC, Gates AJ, Butt JN. Photocatalytic Removal of the Greenhouse Gas Nitrous Oxide by Liposomal Microreactors. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202210572. [PMID: 38529325 PMCID: PMC10962689 DOI: 10.1002/ange.202210572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/11/2022]
Abstract
Nitrous oxide (N2O) is a potent greenhouse and ozone-reactive gas for which emissions are growing rapidly due to increasingly intensive agriculture. Synthetic catalysts for N2O decomposition typically contain precious metals and/or operate at elevated temperatures driving a desire for more sustainable alternatives. Here we demonstrate self-assembly of liposomal microreactors enabling catalytic reduction of N2O to the climate neutral product N2. Photoexcitation of graphitic N-doped carbon dots delivers electrons to encapsulated N2O Reductase enzymes via a lipid-soluble biomolecular wire provided by the MtrCAB protein complex. Within the microreactor, electron transfer from MtrCAB to N2O Reductase is facilitated by the general redox mediator methyl viologen. The liposomal microreactors use only earth-abundant elements to catalyze N2O removal in ambient, aqueous conditions.
Collapse
Affiliation(s)
- Samuel E. H. Piper
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Carla Casadevall
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Erwin Reisner
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Thomas A. Clarke
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Lars J. C. Jeuken
- Leiden Institute of ChemistryLeiden UniversityPO Box 95022300 RALeidenThe Netherlands
| | - Andrew J. Gates
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Julea N. Butt
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| |
Collapse
|
8
|
Jeuken LJC. Biodegradation of pollutants by exoelectrogenic bacteria is not always performed extracellularly. Environ Microbiol 2022; 24:1835-1837. [PMID: 35199430 PMCID: PMC9305215 DOI: 10.1111/1462-2920.15942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Lars J C Jeuken
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300RA, Leiden, the Netherlands
| |
Collapse
|
9
|
Yoneda Y, Kito M, Mori D, Goto A, Kondo M, Miyasaka H, Nagasawa Y, Dewa T. Ultrafast Energy Transfer between Self-Assembled Fluorophore and Photosynthetic Light-Harvesting Complex 2 (LH2) in Lipid Bilayer. J Chem Phys 2022; 156:095101. [DOI: 10.1063/5.0077910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | | | | | - Masaharu Kondo
- Life Science and Applied Chemistry, Nagoya Institute of Technology, Japan
| | - Hiroshi Miyasaka
- Frontier Materials Science, Osaka University Graduate School of Engineering Science School of Engineering Science, Japan
| | - Yutaka Nagasawa
- College of Lifesciences, Ritsumeikan University College of Life Sciences Graduate School of Life Sciences, Japan
| | - Takehisa Dewa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Japan
| |
Collapse
|