1
|
Almatroudi A. Biofilm Resilience: Molecular Mechanisms Driving Antibiotic Resistance in Clinical Contexts. BIOLOGY 2025; 14:165. [PMID: 40001933 PMCID: PMC11852148 DOI: 10.3390/biology14020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Healthcare-associated infections pose a significant global health challenge, negatively impacting patient outcomes and burdening healthcare systems. A major contributing factor to healthcare-associated infections is the formation of biofilms, structured microbial communities encased in a self-produced extracellular polymeric substance matrix. Biofilms are critical in disease etiology and antibiotic resistance, complicating treatment and infection control efforts. Their inherent resistance mechanisms enable them to withstand antibiotic therapies, leading to recurrent infections and increased morbidity. This review explores the development of biofilms and their dual roles in health and disease. It highlights the structural and protective functions of the EPS matrix, which shields microbial populations from immune responses and antimicrobial agents. Key molecular mechanisms of biofilm resistance, including restricted antibiotic penetration, persister cell dormancy, and genetic adaptations, are identified as significant barriers to effective management. Biofilms are implicated in various clinical contexts, including chronic wounds, medical device-associated infections, oral health complications, and surgical site infections. Their prevalence in hospital environments exacerbates infection control challenges and underscores the urgent need for innovative preventive and therapeutic strategies. This review evaluates cutting-edge approaches such as DNase-mediated biofilm disruption, RNAIII-inhibiting peptides, DNABII proteins, bacteriophage therapies, antimicrobial peptides, nanoparticle-based solutions, antimicrobial coatings, and antimicrobial lock therapies. It also examines critical challenges associated with biofilm-related healthcare-associated infections, including diagnostic difficulties, disinfectant resistance, and economic implications. This review emphasizes the need for a multidisciplinary approach and underscores the importance of understanding biofilm dynamics, their role in disease pathogenesis, and the advancements in therapeutic strategies to combat biofilm-associated infections effectively in clinical settings. These insights aim to enhance treatment outcomes and reduce the burden of biofilm-related diseases.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
2
|
Mao Z, Li S, Li Y, Jia T. The bacterial pathogen Pseudomonas plecoglossicida, its epidemiology, virulence factors, vaccine development, and host-pathogen interactions. JOURNAL OF AQUATIC ANIMAL HEALTH 2024; 36:181-191. [PMID: 38402543 DOI: 10.1002/aah.10215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/10/2023] [Accepted: 01/05/2024] [Indexed: 02/26/2024]
Abstract
OBJECTIVE Pseudomoans plecoglossicida has been identified as a fish pathogen since 2000 and has caused serious infections in cultured Large Yellow Croakers Larimiththys crocea in coastal eastern China during recent years. METHODS Published literatures of this pathogen have been reviewed. RESULT Several strains with high genomic similarity have been isolated and identified; the bacteria induce natural infection at lower water temperatures (12.0-25.5°C) and induce numerous granulomas and nodules in the visceral organs of croakers. Researchers have investigated the epidemiology of P. plecoglossicida infection, identified major virulence factors, searched for pathogenic genes, analyzed host-pathogen interactions, and endeavored to develop efficient vaccines. CONCLUSION This paper provides an overview of these research advances to elucidate the virulence mechanisms of the pathogen and to promote vaccine development against infection.
Collapse
Affiliation(s)
- Zhijuan Mao
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, China
| | - Shanshan Li
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, China
| | - Yiying Li
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, China
| | - Tingting Jia
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
3
|
Duan X, Li J, Shi H, Tao Z, Wei X, Ye Y, Guo B. Establishment of Nested PCR for the Detection of Pseudomonas plecoglossicida and Epidemiological Survey of Larimichthys crocea in the Southeast Coastal Region. Animals (Basel) 2024; 14:1427. [PMID: 38791645 PMCID: PMC11117330 DOI: 10.3390/ani14101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The visceral white nodules disease in the internal organs of Larimichthys crocea has caused significant harm in the aquaculture of this species, with Pseudomonas plecoglossicida considered one of the core pathogens causing this disease. In this study, we designed three pairs of specific nested PCR primers targeting the sctU gene of P. plecoglossicida, a crucial component of the Type III secretion system (T3SS), which is instrumental in bacterial pathogenesis and virulence. Through the optimization of PCR reaction conditions, specificity testing, and sensitivity determination, a method was established for the accurate detection of P. plecoglossicida. This method yielded single amplification products, exhibited a false positive rate of zero for reference bacteria, and achieved a detection sensitivity of a minimum of 2.62 copies/reaction for the target sequence. Using the detection method, we conducted analyses on the diseased populations of L. crocea, involving a total of 64 screened fishes along the southeast coast of China from 2021 to 2023. The results revealed that the infection rate of P. plecoglossicida in diseased L. crocea exceeded over 90% in March and April, while in other months, the maximum recorded infection rate was merely 10%. The detection method developed in this study shows potential for early warning and routine monitoring of visceral white nodules disease in the internal organs of species such as L. crocea.
Collapse
Affiliation(s)
- Xinbing Duan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (X.D.); (B.G.)
| | - Jiji Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (X.W.); (Y.Y.)
| | - Hui Shi
- Key Laboratory of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Zhen Tao
- School of Fishery, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Xuelian Wei
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (X.W.); (Y.Y.)
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (X.W.); (Y.Y.)
| | - Baoying Guo
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (X.D.); (B.G.)
| |
Collapse
|
4
|
Buzzanca D, Alessandria V, Botta C, Seif Zadeh N, Ferrocino I, Houf K, Cocolin L, Rantsiou K. Transcriptome Analysis of Arcobacter butzleri Infection in a Mucus-Producing Human Intestinal In Vitro Model. Microbiol Spectr 2023; 11:e0207122. [PMID: 36622176 PMCID: PMC9927503 DOI: 10.1128/spectrum.02071-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Arcobacter butzleri is a foodborne pathogen belonging to the Arcobacteraceae family. This Gram-negative bacterium is found in water, food, and various organisms, including farm animals, clams, and fish. Moreover, A. butzleri has been isolated from human stool samples, where it was associated with gastrointestinal symptoms such as diarrhea. The present study focused on the transcriptome analysis of three A. butzleri strains isolated from human stools and displaying variable virulence potential in vitro. We used a mucus-producing human intestinal in vitro model (Caco-2/HT29-MTX-E12) to study the colonization and invasion abilities of the three A. butzleri strains. The ability of all three A. butzleri strains to colonize our in vitro model system was subsequently confirmed. Moreover, transcriptomics showed the upregulation of putative virulence genes. Among these genes, tonB, exbB, and exbD, which belong to the same operon, were upregulated in strain LMG 11119, which also had the greatest colonization ability. Moreover, genes not currently considered A. butzleri virulence genes were differentially expressed during cell model colonization. The main functions of these genes were linked to organic acid metabolism and iron transport and particularly to the function of the TonB complex. IMPORTANCE Recent advancements in the genomic characterization of A. butzleri revealed putative virulence genes and highlighted the possible pathogenic mechanisms used by this foodborne pathogen. It is therefore possible to study the transcriptomes of these bacteria to explore possible virulence mechanisms under conditions that mimic the infection process. The transcriptome and colonization/invasion analyses that we performed in this study enabled the evaluation of A. butzleri-mediated infection of the mucus-producing human intestinal in vitro model. We confirmed the upregulation of previously proposed virulence genes in the A. butzleri strains. In addition, we identified the differential expression of a number of other genes, which are not currently thought to be associated with virulence, in three A. butzleri strains during infection of mucus-producing human epithelial cells. Changes in the concentration of acetic acid and the upregulation of genes associated with organic acid metabolism during host-pathogen contact were also observed. These findings highlight the importance of previously unreported genes in the virulence mechanisms of A. butzleri.
Collapse
Affiliation(s)
- Davide Buzzanca
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Valentina Alessandria
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Cristian Botta
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Negin Seif Zadeh
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Kurt Houf
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| |
Collapse
|
5
|
Cai H, Yu J, Qiao Y, Ma Y, Zheng J, Lin M, Yan Q, Huang L. Effect of the Type VI Secretion System Secreted Protein Hcp on the Virulence of Aeromonas salmonicida. Microorganisms 2022; 10:microorganisms10122307. [PMID: 36557560 PMCID: PMC9784854 DOI: 10.3390/microorganisms10122307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Aeromonas salmonicida, a psychrophilic bacterial pathogen, is widely distributed in marine freshwater, causing serious economic losses to major salmon farming areas in the world. At present, it is still one of the most important pathogens threatening salmon farming. Hcp (haemolysin-coregulated protein) is an effector protein in the type-VI secretion system (T6SS), which is secreted by T6SS and functions as its structural component. The results of our previous genomic sequencing showed that hcp existed in the mesophilic A. salmonicida SRW-OG1 isolated from naturally infected Epinephelus coioides. To further explore the role of Hcp in A. salmonicida SRW-OG1, we constructed an hcp-RNAi strain and verified its effect on the virulence of A. salmonicida. The results showed that compared with the wild strain, the hcp-RNAi strain suffered from different degrees of decreased adhesion, growth, biofilm formation, extracellular product secretion, and virulence. It was suggested that hcp may be an important virulence gene of A. salmonicida SRW-OG1.
Collapse
Affiliation(s)
- Hongyan Cai
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Jiaying Yu
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Ying Qiao
- Fourth Institute of Oceanography, Ministry of Natural Resources, No. 26, New Century Avenue, Beihai 536000, China
| | - Ying Ma
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Jiang Zheng
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Mao Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen 361021, China
- Correspondence: (Q.Y.); (L.H.)
| | - Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen 361021, China
- Correspondence: (Q.Y.); (L.H.)
| |
Collapse
|
6
|
Nie W, Chen X, Tang Y, Xu N, Zhang H. Potential dsRNAs can be delivered to aquatic for defense pathogens. Front Bioeng Biotechnol 2022; 10:1066799. [PMID: 36466329 PMCID: PMC9712207 DOI: 10.3389/fbioe.2022.1066799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 10/29/2023] Open
Abstract
The use of antibiotics to facilitate resistance to pathogens in aquatic animals is a traditional method of pathogen control that is harmful to the environment and human health. RNAi is an emerging technology in which homologous small RNA molecules target specific genes for degradation, and it has already shown success in laboratory experiments. However, further research is needed before it can be applied in aquafarms. Many laboratories inject the dsRNA into aquatic animals for RNAi, which is obviously impractical and very time consuming in aquafarms. Therefore, to enable the use of RNAi on a large scale, the methods used to prepare dsRNA need to be continuously in order to be fast and efficient. At the same time, it is necessary to consider the issue of biological safety. This review summarizes the key harmful genes associated with aquatic pathogens (viruses, bacteria, and parasites) and provides potential targets for the preparation of dsRNA; it also lists some current examples where RNAi technology is used to control aquatic species, as well as how to deliver dsRNA to the target hydrobiont.
Collapse
Affiliation(s)
| | | | | | | | - Hao Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
He R, Wang J, Lin M, Tian J, Wu B, Tan X, Zhou J, Zhang J, Yan Q, Huang L. Effect of Ferredoxin Receptor FusA on the Virulence Mechanism of Pseudomonas plecoglossicida. Front Cell Infect Microbiol 2022; 12:808800. [PMID: 35392610 PMCID: PMC8981516 DOI: 10.3389/fcimb.2022.808800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas plecoglossicida is an aerobic Gram-negative bacterium, which is the pathogen of “Visceral white spot disease” in large yellow croaker. P. plecoglossicida is a temperature-dependent bacterial pathogen in fish, which not only reduces the yield of large yellow croaker but also causes continuous transmission of the disease, seriously endangering the healthy development of fisheries. In this study, a mutant strain of fusA was constructed using homologous recombination technology. The results showed that knockout of P. plecoglossicida fusA significantly affected the ability of growth, adhesion, and biofilm formation. Temperature, pH, H2O2, heavy metals, and the iron-chelating agent were used to treat the wild type of P. plecoglossicida; the results showed that the expression of fusA was significantly reduced at 4°C, 12°C, and 37°C. The expression of fusA was significantly increased at pH 4 and 5. Cu2+ has a significant inducing effect on the expression of fusA, but Pb2+ has no obvious effect; the expression of fusA was significantly upregulated under different concentrations of H2O2. The expression of the fusA gene was significantly upregulated in the 0.5~4-μmol/l iron-chelating agent. The expression level of the fusA gene was significantly upregulated after the logarithmic phase. It was suggested that fusA included in the TBDR family not only was involved in the transport of ferredoxin but also played important roles in the pathogenicity and environment adaptation of P. plecoglossicida.
Collapse
Affiliation(s)
- Rongchao He
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Jiajia Wang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Miaozhen Lin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Jing Tian
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Bi Wu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Xiaohan Tan
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Jianchuan Zhou
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Jiachen Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
- *Correspondence: Qingpi Yan, ; Lixing Huang,
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
- *Correspondence: Qingpi Yan, ; Lixing Huang,
| |
Collapse
|
8
|
Tang Y, Jiao J, Zhao L, Zhuang Z, Wang X, Fu Q, Huang H, Huang L, Qin Y, Zhang J, Yan Q. The contribution of exbB gene to pathogenicity of Pseudomonas plecoglossicida and its interactions with Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2022; 120:610-619. [PMID: 34968708 DOI: 10.1016/j.fsi.2021.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
To study the roles of the exbB gene in Pseudomonas plecoglossicida during interactions with Epinephelus coioides, five short hairpin RNAs (shRNAs) were designed and synthesized to silence the exbB gene in P. plecoglossicida which resulted in significant reductions in exbB mRNA expression. The mutant with the best silencing efficiency (89.3%) was selected for further study. Silencing exbB in the exbB-RNA interference (RNAi) strain resulted in a 70% increase in the survival rate and a 3-day delay in the onset of infection in E. coioides. Silencing of the exbB gene also resulted in a significant decrease in the number of white spots on the spleen surface and in the spleen pathogen load. The results of dual RNA-seq showed that exbB silencing in P. plecoglossicida also resulted in a significant change in both the pathogen and host transcriptomes in the spleens of infected E. coioides. Comparative transcriptome analysis showed that silencing exbB caused significant changes in multiple signaling molecules and interaction- and immune system-related genes in E. coioides. Gene silencing also resulted in the differential expression of flagellar assembly and the bacterial secretion system in P. plecoglossicida during the infection period, and most of the DEGs were down-regulation. These host-pathogen interactions may make it easier for E. coioides to eliminate the exbB-RNAi strain of P. plecoglossicida, suggesting a significant decrease in the pathogenicity of this strain. These results indicated that exbB was a virulence gene of P. plecoglossicida which contributed a lot in the pathogen-host interactions with E. coioides.
Collapse
Affiliation(s)
- Yi Tang
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Jiping Jiao
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Zhixia Zhuang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China
| | - Xiaoru Wang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China
| | - Qi Fu
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China
| | - Huabin Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China; College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, 361024, China; Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China.
| |
Collapse
|