1
|
Kaur T, Devi R, Negi R, Kour H, Singh S, Khan SS, Kumari C, Kour D, Chowdhury S, Kapoor M, Rai AK, Rustagi S, Shreaz S, Yadav AN. Macronutrients-availing microbiomes: biodiversity, mechanisms, and biotechnological applications for agricultural sustainability. Folia Microbiol (Praha) 2025; 70:293-319. [PMID: 39592542 DOI: 10.1007/s12223-024-01220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
Nitrogen, phosphorus, and potassium are the three most essential micronutrients which play major roles in plant survivability by being a structural or non-structural component of the cell. Plants acquire these nutrients from soil in the fixed (NO3¯, NH4+) and solubilized forms (K+, H2PO4- and HPO42-). In soil, the fixed and solubilized forms of nutrients are unavailable or available in bare minimum amounts; therefore, agrochemicals were introduced. Agrochemicals, mined from the deposits or chemically prepared, have been widely used in the agricultural farms over the decades for the sake of higher production of the crops. The excessive use of agrochemicals has been found to be deleterious for humans, as well as the environment. In the environment, agrochemical usage resulted in soil acidification, disturbance of microbial ecology, and eutrophication of aquatic and terrestrial ecosystems. A solution to such devastating agro-input was found to be substituted by macronutrients-availing microbiomes. Macronutrients-availing microbiomes solubilize and fix the insoluble form of nutrients and convert them into soluble forms without causing any significant harm to the environment. Microbes convert the insoluble form to the soluble form of macronutrients (nitrogen, phosphorus, and potassium) through different mechanisms such as fixation, solubilization, and chelation. The microbiomes having capability of fixing and solubilizing nutrients contain some specific genes which have been reported in diverse microbial species surviving in different niches. In the present review, the biodiversity, mechanism of action, and genomics of different macronutrients-availing microbiomes are presented.
Collapse
Affiliation(s)
- Tanvir Kaur
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| | - Rubee Devi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Harpreet Kour
- Department of Botany, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Ayodhya, Faizabad, Uttar Pradesh, India
| | - Sofia Sharief Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Chandresh Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Bhajhol, Solan, Himachal Pradesh, India
| | - Divjot Kour
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Sohini Chowdhury
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Monit Kapoor
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Sheikh Shreaz
- Desert Agriculture and Ecosystem Department, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| |
Collapse
|
2
|
Zhu L, Zhang P, Ma S, Yu Q, Wang H, Liu Y, Yang S, Chen Y. Enhancing carrot ( Daucus carota var. sativa Hoffm.) plant productivity with combined rhizosphere microbial consortium. Front Microbiol 2024; 15:1466300. [PMID: 39633805 PMCID: PMC11615968 DOI: 10.3389/fmicb.2024.1466300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Background Plant growth-promoting rhizobacteria (PGPR) are an integral part of agricultural practices due to their roles in promoting plant growth, improving soil conditions, and suppressing diseases. However, researches on the PGPR in the rhizosphere of carrots, an important vegetable crop, is relative limited. Therefore, this study aimed to isolate and characterize PGPR strains from the rhizosphere soil of greenhouse-grown carrots, with a focus on their potential to stimulate carrot growth. Methods Through a screening process, 12 high-efficiency phosphorus-solubilizing bacteria, one nitrogen-fixing strain, and two potassium-solubilizing strains were screened. Prominent among these were Bacillus firmus MN3 for nitrogen fixation ability, Acinetobacter pittii MP41 for phosphate solubilization, and Bacillus subtilis PK9 for potassium-solubilization. These strains were used to formulate a combined microbial consortium, N3P41K9, for inoculation and further analysis. Results The application of N3P41K9, significantly enhanced carrot growth, with an increase in plant height by 17.1% and root length by 54.5% in a pot experiment, compared to the control group. This treatment also elevated alkaline-hydrolyzable nitrogen levels by 72.4%, available phosphorus by 48.2%, and available potassium by 23.7%. Subsequent field trials confirmed the efficacy of N3P41K9, with a notable 12.5% increase in carrot yields. The N3P41K9 treatment had a minimal disturbance on soil bacterial diversity and abundance, but significantly increased the prevalence of beneficial genera such as Gemmatimonas and Nitrospira. Genus-level redundancy analysis indicated that the pH and alkali-hydrolyzable nitrogen content were pivotal in shaping the bacterial community composition. Discussion The findings of this study highlight the feasibility of combined microbial consortium in promoting carrot growth, increasing yield, and enriching the root environment with beneficial microbes. Furthermore, these results suggest the potential of the N3P41K9 consortium for soil amelioration, offering a promising strategy for sustainable agricultural practices.
Collapse
Affiliation(s)
- Liping Zhu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
- Postdoctoral Research Station, Rushan Hanwei Bio-Technical & Science CO., LTD., Weihai, Shandong, China
| | - Peiqiang Zhang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shunan Ma
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Quan Yu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Haibing Wang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yuexuan Liu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Song Yang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yanling Chen
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, College of Resource and Environment Science, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Kumar S, Sindhu SS. Drought stress mitigation through bioengineering of microbes and crop varieties for sustainable agriculture and food security. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100285. [PMID: 39512260 PMCID: PMC11542684 DOI: 10.1016/j.crmicr.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Climate change and agriculture are intrinsically connected and sudden changes in climatic conditions adversely impact global food production and security. The climate change-linked abiotic stressors like drought and high temperatures are resulting in crop failure. The most severe abiotic stress drought significantly affect the stomatal closure, production of reactive oxygen species, transpiration, photosynthesis or other physiological processes and plant morphology, and adversely affect plant growth and crop yield. Therefore, there is an exigent need for cost effective and eco-friendly modern technologies to induce drought tolerance in crop plants leading to climate-adapted sustainable agricultural practices for sustained food production. Among many options being pursued in this regard, the use of plant growth promoting microbes (PGPMs) is the most sustainable approach to promote drought stress resilience in crop plants leading to better plant growth and crop productivity. These PGPMs confer drought resistance via various direct or indirect mechanisms including production of antioxidants, enzymes, exopolysaccharides, modulation of phytohormones level, osmotic adjustment by inducing the accumulation of sugars, along with increases in nutrients, water uptake and photosynthetic pigments. However, several technological and ecological challenges limit their use in agriculture and sometimes treatment with plant beneficial microbes fails to produce desired results under field conditions. Thus, development of synthetic microbial communities or host mediated microbiome engineering or development of transgenic plants with the capacity to express desired traits may promote plant survival and growth under drought stress conditions. The present review critically assesses research evidence on the plant growth and stress resilience promoting potentials of PGPMs and their genes as an approach to develop drought resilient plants leading to increased crop productivity. Effective collaboration among scientific communities, policymakers and regulatory agencies is needed to create strong frameworks that both promote and regulate the utilization of synthetic microbial communities and transgenic plants in agriculture.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
4
|
Alzate Zuluaga MY, Fattorini R, Cesco S, Pii Y. Plant-microbe interactions in the rhizosphere for smarter and more sustainable crop fertilization: the case of PGPR-based biofertilizers. Front Microbiol 2024; 15:1440978. [PMID: 39176279 PMCID: PMC11338843 DOI: 10.3389/fmicb.2024.1440978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Biofertilizers based on plant growth promoting rhizobacteria (PGPR) are nowadays gaining increasingly attention as a modern tool for a more sustainable agriculture due to their ability in ameliorating root nutrient acquisition. For many years, most research was focused on the screening and characterization of PGPR functioning as nitrogen (N) or phosphorus (P) biofertilizers. However, with the increasing demand for food using far fewer chemical inputs, new investigations have been carried out to explore the potential use of such bacteria also as potassium (K), sulfur (S), zinc (Zn), or iron (Fe) biofertilizers. In this review, we update the use of PGPR as biofertilizers for a smarter and more sustainable crop production and deliberate the prospects of using microbiome engineering-based methods as potential tools to shed new light on the improvement of plant mineral nutrition. The current era of omics revolution has enabled the design of synthetic microbial communities (named SynComs), which are emerging as a promising tool that can allow the formulation of biofertilizers based on PGPR strains displaying multifarious and synergistic traits, thus leading to an increasingly efficient root acquisition of more than a single essential nutrient at the same time. Additionally, host-mediated microbiome engineering (HMME) leverages advanced omics techniques to reintroduce alleles coding for beneficial compounds, reinforcing positive plant-microbiome interactions and creating plants capable of producing their own biofertilizers. We also discusses the current use of PGPR-based biofertilizers and point out possible avenues of research for the future development of more efficient biofertilizers for a smarter and more precise crop fertilization. Furthermore, concerns have been raised about the effectiveness of PGPR-based biofertilizers in real field conditions, as their success in controlled experiments often contrasts with inconsistent field results. This discrepancy highlights the need for standardized protocols to ensure consistent application and reliable outcomes.
Collapse
|
5
|
Liang X, Ishfaq S, Liu Y, Jijakli MH, Zhou X, Yang X, Guo W. Identification and genomic insights into a strain of Bacillus velezensis with phytopathogen-inhibiting and plant growth-promoting properties. Microbiol Res 2024; 285:127745. [PMID: 38733724 DOI: 10.1016/j.micres.2024.127745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
The use of biological agents offers a sustainable alternative to chemical control in managing plant diseases. In this study, Bacillus velezensis IFST-221 was isolated from the rhizosphere of a healthy maize plant amidst a population showing severe disease symptoms. The investigation demonstrated a broad-spectrum antagonistic activity of IFST-221 against eight species of pathogenic ascomycetes and oomycetes, suggesting its potential utility in combating plant diseases like maize ear rot and cotton Verticillium wilt. Additionally, our study unveiled that IFST-221 has demonstrated significant plant growth-promoting properties, particularly in maize, cotton, tomato, and broccoli seedlings. This growth promotion was linked to its ability to produce indole-3-acetic acid, nitrogen fixation, phosphate and potassium solubilization, and biofilm formation in laboratory conditions. A complete genome sequencing of IFST-221 yielded a genome size of 3.858 M bp and a GC content of 46.71%. The genome analysis identified 3659 protein-coding genes, among which were nine secondary metabolite clusters with known antimicrobial properties. Additionally, three unknown compounds with potentially novel properties were also predicted from the genomic data. Genome mining also identified several key genes associated with plant growth regulation, colonization, and biofilm formation. These findings provide a compelling case for the application of B. velezensis IFST-221 in agricultural practices. The isolate's combined capabilities of plant growth promotion and antagonistic activity against common plant pathogens suggest its promise as an integrated biological agent in disease management and plant productivity enhancement.
Collapse
Affiliation(s)
- Xiaoyan Liang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Gembloux Agro-Bio Tech, Liege University, Laboratory of Integrated and Urban Plant Pathology, Passage des déportés 2, Gembloux 5030, Belgium
| | - Shumila Ishfaq
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yang Liu
- School of Food Science and Engineering, Foshan University/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043)/Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan, Guangdong 528231, China
| | - M Haissam Jijakli
- Gembloux Agro-Bio Tech, Liege University, Laboratory of Integrated and Urban Plant Pathology, Passage des déportés 2, Gembloux 5030, Belgium
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Wei Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
6
|
Zhao Y, Liang H, Zhang J, Chen Y, Dhital YP, Zhao T, Wang Z. Isolation and Characterization of Potassium-Solubilizing Rhizobacteria (KSR) Promoting Cotton Growth in Saline-Sodic Regions. Microorganisms 2024; 12:1474. [PMID: 39065241 PMCID: PMC11279176 DOI: 10.3390/microorganisms12071474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Cotton is highly sensitive to potassium, and Xinjiang, China's leading cotton-producing region, faces a severe challenge due to reduced soil potassium availability. Biofertilizers, particularly potassium-solubilizing rhizobacteria (KSR), convert insoluble potassium into plant-usable forms, offering a sustainable solution for evergreen agriculture. This study isolated and characterized KSR from cotton, elucidated their potassium solubilization mechanisms, and evaluated the effects of inoculating KSR strains on cotton seedlings. Twenty-three KSR strains were isolated from cotton rhizosphere soil using modified Aleksandrov medium. Their solubilizing capacities were assessed in a liquid medium. Strain A10 exhibited the highest potassium solubilization capacity (21.8 ppm) by secreting organic acids such as lactic, citric, acetic, and succinic acid, lowering the pH and facilitating potassium release. A growth curve analysis and potassium solubilization tests of A10 under alkali stress showed its vigorous growth and maintained solubilization ability at pH 8-9, with significant inhibition at pH 10. Furthermore, 16S rRNA sequencing identified strain A10 as Pseudomonas aeruginosa. Greenhouse pot experiments showed that inoculating cotton plants with strain A10 significantly increased plant height and promoted root growth. This inoculation also enhanced dry biomass accumulation in both the aerial parts and root systems of the plants, while reducing the root-shoot ratio. These results suggest that Pseudomonas aeruginosa A10 has potential as a biofertilizer, offering a new strategy for sustainable agriculture.
Collapse
Affiliation(s)
- Yue Zhao
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; (Y.Z.); (H.L.); (J.Z.); (Y.C.); (Y.P.D.); (T.Z.)
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, China
- Technology Innovation Center for Agricultural Water & Fertilizer Efficiency Equipment of Xinjiang Production & Construction Group, Shihezi 832000, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China
| | - Hongbang Liang
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; (Y.Z.); (H.L.); (J.Z.); (Y.C.); (Y.P.D.); (T.Z.)
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, China
- Technology Innovation Center for Agricultural Water & Fertilizer Efficiency Equipment of Xinjiang Production & Construction Group, Shihezi 832000, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China
| | - Jihong Zhang
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; (Y.Z.); (H.L.); (J.Z.); (Y.C.); (Y.P.D.); (T.Z.)
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, China
- Technology Innovation Center for Agricultural Water & Fertilizer Efficiency Equipment of Xinjiang Production & Construction Group, Shihezi 832000, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China
| | - Yu Chen
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; (Y.Z.); (H.L.); (J.Z.); (Y.C.); (Y.P.D.); (T.Z.)
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, China
- Technology Innovation Center for Agricultural Water & Fertilizer Efficiency Equipment of Xinjiang Production & Construction Group, Shihezi 832000, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China
| | - Yam Prasad Dhital
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; (Y.Z.); (H.L.); (J.Z.); (Y.C.); (Y.P.D.); (T.Z.)
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, China
- Technology Innovation Center for Agricultural Water & Fertilizer Efficiency Equipment of Xinjiang Production & Construction Group, Shihezi 832000, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China
| | - Tao Zhao
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; (Y.Z.); (H.L.); (J.Z.); (Y.C.); (Y.P.D.); (T.Z.)
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, China
- Technology Innovation Center for Agricultural Water & Fertilizer Efficiency Equipment of Xinjiang Production & Construction Group, Shihezi 832000, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China
| | - Zhenhua Wang
- College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China; (Y.Z.); (H.L.); (J.Z.); (Y.C.); (Y.P.D.); (T.Z.)
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, China
- Technology Innovation Center for Agricultural Water & Fertilizer Efficiency Equipment of Xinjiang Production & Construction Group, Shihezi 832000, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China
| |
Collapse
|
7
|
Tian S, Xu Y, Zhong Y, Qiao Y, Wang D, Wu L, Yang X, Yang M, Wu Z. Exploring the Organic Acid Secretion Pathway and Potassium Solubilization Ability of Pantoea vagans ZHS-1 for Enhanced Rice Growth. PLANTS (BASEL, SWITZERLAND) 2024; 13:1945. [PMID: 39065472 PMCID: PMC11281029 DOI: 10.3390/plants13141945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
Soil potassium deficiency is a common issue limiting agricultural productivity. Potassium-solubilizing bacteria (KSB) show significant potential in mitigating soil potassium deficiency, improving soil quality, and enhancing plant growth. However, different KSB strains exhibit diverse solubilization mechanisms, environmental adaptability, and growth-promoting abilities. In this study, we isolated a multifunctional KSB strain ZHS-1, which also has phosphate-solubilizing and IAA-producing capabilities. 16S rDNA sequencing identified it as Pantoea vagans. Scanning electron microscopy (SEM) showed that strain ZHS-1 severely corroded the smooth, compact surface of potassium feldspar into a rough and loose state. The potassium solubilization reached 20.3 mg/L under conditions where maltose was the carbon source, sodium nitrate was the nitrogen source, and the pH was 7. Organic acid metabolism profiling revealed that strain ZHS-1 primarily utilized the EMP-TCA cycle, supplemented by pathways involving pantothenic acid, glyoxylic acid, and dicarboxylic acids, to produce large amounts of organic acids and energy. This solubilization was achieved through direct solubilization mechanisms. The strain also secreted IAA through a tryptophan-dependent metabolic pathway. When strain ZHS-1 was inoculated into the rhizosphere of rice, it demonstrated significant growth-promoting effects. The rice plants exhibited improved growth and root development, with increased accumulation of potassium and phosphorus. The levels of available phosphorus and potassium in the rhizosphere soil also increased significantly. Additionally, we observed a decrease in the relative abundance of Actinobacteria and Proteobacteria in the rice rhizosphere soil, while the relative abundance of genera associated with acid production and potassium solubilization, such as Gemmatimonadota, Acidobacteria, and Chloroflexi, as well as Cyanobacteria, which are beneficial to plant growth, increased. These findings contribute to a deeper understanding of the potassium solubilization mechanisms of strain ZHS-1 and highlight its potential as a plant growth-promoting rhizobacteria.
Collapse
Affiliation(s)
- Shiqi Tian
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (S.T.); (Y.X.); (Y.Z.); (Y.Q.); (L.W.); (X.Y.)
| | - Yufeng Xu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (S.T.); (Y.X.); (Y.Z.); (Y.Q.); (L.W.); (X.Y.)
| | - Yanglin Zhong
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (S.T.); (Y.X.); (Y.Z.); (Y.Q.); (L.W.); (X.Y.)
| | - Yaru Qiao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (S.T.); (Y.X.); (Y.Z.); (Y.Q.); (L.W.); (X.Y.)
| | - Dongchao Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China;
| | - Lei Wu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (S.T.); (Y.X.); (Y.Z.); (Y.Q.); (L.W.); (X.Y.)
| | - Xue Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (S.T.); (Y.X.); (Y.Z.); (Y.Q.); (L.W.); (X.Y.)
| | - Meiying Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (S.T.); (Y.X.); (Y.Z.); (Y.Q.); (L.W.); (X.Y.)
| | - Zhihai Wu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China;
| |
Collapse
|
8
|
Wang Y, Chen P, Lin Q, Zuo L, Li L. Whole-Genome Sequencing of Two Potentially Allelopathic Strains of Bacillus from the Roots of C. equisetifolia and Identification of Genes Related to Synthesis of Secondary Metabolites. Microorganisms 2024; 12:1247. [PMID: 38930629 PMCID: PMC11205695 DOI: 10.3390/microorganisms12061247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The coastal Casuarina equisetifolia is the most common tree species in Hainan's coastal protection forests. Sequencing the genomes of its allelopathic endophytes can allow the protective effects of these bacteria to be effectively implemented in protected forests. The goal of this study was to sequence the whole genomes of the endophytes Bacillus amyloliquefaciens and Bacillus aryabhattai isolated from C. equisetifolia root tissues. The results showed that the genome sizes of B. amyloliquefaciens and B. aryabhattai were 3.854 Mb and 5.508 Mb, respectively. The two strains shared 2514 common gene families while having 1055 and 2406 distinct gene families, respectively. The two strains had 283 and 298 allelochemical synthesis-associated genes, respectively, 255 of which were shared by both strains and 28 and 43 of which were unique to each strain, respectively. The genes were putatively involved in 11 functional pathways, including secondary metabolite biosynthesis, terpene carbon skeleton biosynthesis, biosynthesis of ubiquinone and other terpene quinones, tropane/piperidine and piperidine alkaloids biosynthesis, and phenylpropanoid biosynthesis. NQO1 and entC are known to be involved in the biosynthesis of ubiquinone and other terpenoid quinones, and rfbC/rmlC, rfbA/rmlA/rffH, and rfbB/rmlB/rffG are involved in the biosynthesis of polyketide glycan units. Among the B. aryabhattai-specific allelochemical synthesis-related genes, STE24 is involved in terpene carbon skeleton production, atzF and gdhA in arginine biosynthesis, and TYR in isoquinoline alkaloid biosynthesis. B. amyloliquefaciens and B. aryabhattai share the genes aspB, yhdR, trpA, trpB, and GGPS, which are known to be involved in the synthesis of carotenoids, indole, momilactones, and other allelochemicals. Additionally, these bacteria are involved in allelochemical synthesis via routes such as polyketide sugar unit biosynthesis and isoquinoline alkaloid biosynthesis. This study sheds light on the genetic basis of allelopathy in Bacillus strains associated with C. equisetifolia, highlighting the possible use of these bacteria in sustainable agricultural strategies for weed management and crop protection.
Collapse
Affiliation(s)
| | | | | | | | - Lei Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
9
|
Jiang M, Dong C, Bian W, Zhang W, Wang Y. Effects of different fertilization practices on maize yield, soil nutrients, soil moisture, and water use efficiency in northern China based on a meta-analysis. Sci Rep 2024; 14:6480. [PMID: 38499586 PMCID: PMC10948899 DOI: 10.1038/s41598-024-57031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
The application of fertilizer to ensure the steady improvement of crop yield has become the main means of agricultural production. However, it remains to be determined whether fertilization practices with different combinations of nitrogen (N), phosphorus (P), potassium (K), and organic (O) fertilizers play a positive role in the sustainability of maize yield and the soil in which it is grown. Therefore,this meta-analysis extracted 2663 data points from 76 studies to systematically analyze and explore the effects of different fertilization measures on maize yield, soil nutrients, water content and water use efficiency (WUE) in northern China. Articles addressing this topic showed that fertilization effectively increased the soil nutrient content and maize yield. The soil organic matter (SOM) increased by 2.36 (N)-55.38% (NPO), total nitrogen content increased by 6.10 (N)-56.39% (NPO), available phosphorus content increased by 17.12 (N)-474.74% (NPO), and available potassium content changed by - 2.90 (NP)-64.40% (NPO). Soil moisture increased by 3.59% under a single organic fertilizer application and decreased by 4.27-13.40% under the other treatments. Compared with no fertilization, the yield increase of fertilized maize reached 11.65-220.42%. NP, NPK and NPKO contributed the most to increased yield in lithological, black and fluvo-aquic soils, respectively. The effects of different fertilization practices on maize yield varied in response to the same meteorological factors. The WUE increased from 9.51 to 160.72%. In conclusion, rational fertilization can improve the soil nutrient content and increase maize yield. The combined application of chemical and organic fertilizer showed the greatest increase in yield and WUE. Organic fertilizer application alone increased soil moisture. Our results provide a theoretical basis for fertilizer application and for improving the soil structure for maize cultivation in northern China.
Collapse
Affiliation(s)
- Minghao Jiang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Chao Dong
- Inner Mongolia University of Technology, Hohhot, 010051, Inner Mongolia, China
| | - Wenpeng Bian
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Wenbei Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Yong Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
10
|
Zhu R, Jin L, Sang Y, Hu S, Wang BT, Jin FJ. Characterization of potassium-solubilizing fungi, Mortierella spp., isolated from a poplar plantation rhizosphere soil. Arch Microbiol 2024; 206:157. [PMID: 38480543 DOI: 10.1007/s00203-024-03912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 04/16/2024]
Abstract
Potassium-solubilizing microorganisms are capable of secreting acidic chemicals that dissolve and release potassium from soil minerals, thus facilitating potassium uptake by plants. In this study, three potassium-dissolving filamentous fungi were isolated from the rhizosphere soil of a poplar plantation in Jiangsu Province, China. Phylogenetic analyses based on ITS, 18 S, and 28 S showed that these three isolates were most similar to Mortierella. These strains also possessed spherical or ellipsoidal spores, produced sporangia at the hyphal tip, and formed petal-like colonies on PDA media resembling those of Mortierella species. These findings, along with further phenotypic observations, suggest that these isolates were Mortierella species. In addition, the potassium-dissolution experiment showed that strain 2K4 had a relatively high potassium-solubilizing capacity among these isolated fungi. By investigating the influences of different nutrient conditions (carbon source, nitrogen source, and inorganic salt) and initial pH values on the potassium-dissolving ability, the optimal potassium-solubilization conditions of the isolate were determined. When potassium feldspar powder was used as an insoluble potassium source, isolate 2K4 exhibited a significantly better polysaccharide aggregation ability on the formed mycelium-potassium feldspar complex. The composition and content of organic acids secreted by strain 2K4 were further detected, and the potassium-dissolution mechanism of the Mortierella species and its growth promotion effect were discussed, using maize as an example.
Collapse
Affiliation(s)
- Rui Zhu
- College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Long Jin
- College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yue Sang
- College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Shuang Hu
- College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Bao-Teng Wang
- College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Feng-Jie Jin
- College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.
| |
Collapse
|
11
|
Valencia-Marin MF, Chávez-Avila S, Guzmán-Guzmán P, Orozco-Mosqueda MDC, de Los Santos-Villalobos S, Glick BR, Santoyo G. Survival strategies of Bacillus spp. in saline soils: Key factors to promote plant growth and health. Biotechnol Adv 2024; 70:108303. [PMID: 38128850 DOI: 10.1016/j.biotechadv.2023.108303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Soil salinity is one of the most important abiotic factors that affects agricultural production worldwide. Because of saline stress, plants face physiological changes that have negative impacts on the various stages of their development, so the employment of plant growth-promoting bacteria (PGPB) is one effective means to reduce such toxic effects. Bacteria of the Bacillus genus are excellent PGPB and have been extensively studied, but what traits makes them so extraordinary to adapt and survive under harsh situations? In this work we review the Bacillus' innate abilities to survive in saline stressful soils, such as the production osmoprotectant compounds, antioxidant enzymes, exopolysaccharides, and the modification of their membrane lipids. Other survival abilities are also discussed, such as sporulation or a reduced growth state under the scope of a functional interaction in the rhizosphere. Thus, the most recent evidence shows that these saline adaptive activities are important in plant-associated bacteria to potentially protect, direct and indirect plant growth-stimulating activities. Additionally, recent advances on the mechanisms used by Bacillus spp. to improve the growth of plants under saline stress are addressed, including genomic and transcriptomic explorations. Finally, characterization and selection of Bacillus strains with efficient survival strategies are key factors in ameliorating saline problems in agricultural production.
Collapse
Affiliation(s)
- María F Valencia-Marin
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich. 58030, Mexico
| | - Salvador Chávez-Avila
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich. 58030, Mexico
| | - Paulina Guzmán-Guzmán
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich. 58030, Mexico
| | - Ma Del Carmen Orozco-Mosqueda
- Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México en Celaya, 38010 Celaya, Gto, Mexico
| | | | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich. 58030, Mexico.
| |
Collapse
|
12
|
Yang H, Lu L, Chen Y, Ye J. Transcriptomic Analysis Reveals the Response of the Bacterium Priestia Aryabhattai SK1-7 to Interactions and Dissolution with Potassium Feldspar. Appl Environ Microbiol 2023; 89:e0203422. [PMID: 37154709 DOI: 10.1128/aem.02034-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Potassium feldspar (K2O·Al2O3·6SiO2) is considered to be the most important source of potash fertilizer. The use of microorganisms to dissolve potassium feldspar is a low-cost and environmentally friendly method. Priestia aryabhattai SK1-7 is a strain with a strong ability to dissolve potassium feldspar; it showed a faster pH drop and produced more acid in the medium with potassium feldspar as the insoluble potassium source than in the medium with K2HPO4 as the soluble potassium source. We speculated whether the cause of acid production was related to one or more stresses, such as mineral-induced generation of reactive oxygen species (ROS), the presence of aluminum in potassium feldspar, and cell membrane damage due to friction between SK1-7 and potassium feldspar, and analyzed it by transcriptome. The results revealed that the expression of the genes related to pyruvate metabolism, the two-component system, DNA repair, and oxidative stress pathways in strain SK1-7 was significantly upregulated in potassium feldspar medium. The subsequent validation experiments revealed that ROS were the stress faced by strain SK1-7 when interacting with potassium feldspar and led to a decrease in the total fatty acid content of SK1-7. In the face of ROS stress, strain SK1-7 upregulated the expression of the maeA-1 gene, allowing malic enzyme (ME2) to produce more pyruvate to be secreted outside the cell using malate as a substrate. Pyruvate is both a scavenger of external ROS and a gas pedal of dissolved potassium feldspar. IMPORTANCE Mineral-microbe interactions play important roles in the biogeochemical cycling of elements. Manipulating mineral-microbe interactions and optimizing the consequences of such interactions can be used to benefit society. It is necessary to explore the black hole of the mechanism of interaction between the two. In this study, it is revealed that P. aryabhattai SK1-7 faces mineral-induced ROS stress by upregulating a series of antioxidant genes as a passive defense, while overexpression of malic enzyme (ME2) secretes pyruvate to scavenge ROS as well as to increase feldspar dissolution, releasing K, Al, and Si into the medium. Our research provides a theoretical basis for improving the ability of microorganisms to weather minerals through genetic manipulation in the future.
Collapse
Affiliation(s)
- Hui Yang
- College of Forestry and Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Lanxiang Lu
- College of Forestry and Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yifan Chen
- College of Forestry and Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jianren Ye
- College of Forestry and Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Haque MM, Khatun M, Mosharaf MK, Rahman A, Haque MA, Nahar K. Biofilm producing probiotic bacteria enhance productivity and bioactive compounds in tomato. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
14
|
Deng C, Liang X, Zhang N, Li B, Wang X, Zeng N. Molecular mechanisms of plant growth promotion for methylotrophic Bacillus aryabhattai LAD. Front Microbiol 2022; 13:917382. [PMID: 36353455 PMCID: PMC9637944 DOI: 10.3389/fmicb.2022.917382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) can produce hormone-like substances, promote plant nutrient uptake, enhance plant resistance, inhibit the growth of pathogenic bacteria, and induce plant resistance to biotic and abiotic stresses. Bacillus is one of the most studied genera that promote plant root development. Since its discovery in 2009, B. aryabhattai has shown promising properties such as promoting plant growth and improving crop yield. However, the mechanisms of B. aryabhattai promoting plant growth remain to be investigated. In this study, the chromosome of B. aryabhattai strain LAD and five plasmids within the cell were sequenced and annotated. The genome, with a length of 5,194,589 bp and 38.12% GC content, contains 5,288 putative protein-coding genes, 39 rRNA, and 112 tRNA. The length of the five plasmids ranged from 116,519 to 212,484 bp, and a total of 810 putative protein-coding genes, 4 rRNA, and 32 tRNA were predicted in the plasmids. Functional annotation of the predicted genes revealed numerous genes associated with indole-3 acetic acid (IAA) and exopolysaccharides (EPSs) biosynthesis, membrane transport, nitrogen cycle metabolism, signal transduction, cell mobility, stress response, and antibiotic resistance on the genome which benefits the plants. Genes of carbohydrate-active enzymes were detected in both the genome and plasmids suggesting that LAD has the capacity of synthesizing saccharides and utilizing organic materials like root exudates. LAD can utilize different carbon sources of varied carbon chain length, i.e., methanol, acetate, glycerol, glucose, sucrose, and starch for growth and temperature adaptation suggesting a high versatility of LAD for thriving in fluctuating environments. LAD produced the most EPSs with sucrose as sole carbon source, and high concentration of IAA was produced when the maize plant was cultivated with LAD, which may enhance plant growth. LAD significantly stimulated the development of the maize root. The genome-based information and experimental evidence demonstrated that LAD with diverse metabolic capabilities and positive interactions with plants has tremendous potential for adaptation to the dynamic soil environments and promoting plant growth.
Collapse
Affiliation(s)
- Chao Deng
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Xiaolong Liang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Ning Zhang,
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Bingxue Li,
| | - Xiaoyu Wang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Nan Zeng
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
15
|
Chaudhary P, Singh S, Chaudhary A, Sharma A, Kumar G. Overview of biofertilizers in crop production and stress management for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:930340. [PMID: 36082294 PMCID: PMC9445558 DOI: 10.3389/fpls.2022.930340] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/21/2022] [Indexed: 05/09/2023]
Abstract
With the increase in world population, the demography of humans is estimated to be exceeded and it has become a major challenge to provide an adequate amount of food, feed, and agricultural products majorly in developing countries. The use of chemical fertilizers causes the plant to grow efficiently and rapidly to meet the food demand. The drawbacks of using a higher quantity of chemical or synthetic fertilizers are environmental pollution, persistent changes in the soil ecology, physiochemical composition, decreasing agricultural productivity and cause several health hazards. Climatic factors are responsible for enhancing abiotic stress on crops, resulting in reduced agricultural productivity. There are various types of abiotic and biotic stress factors like soil salinity, drought, wind, improper temperature, heavy metals, waterlogging, and different weeds and phytopathogens like bacteria, viruses, fungi, and nematodes which attack plants, reducing crop productivity and quality. There is a shift toward the use of biofertilizers due to all these facts, which provide nutrition through natural processes like zinc, potassium and phosphorus solubilization, nitrogen fixation, production of hormones, siderophore, various hydrolytic enzymes and protect the plant from different plant pathogens and stress conditions. They provide the nutrition in adequate amount that is sufficient for healthy crop development to fulfill the demand of the increasing population worldwide, eco-friendly and economically convenient. This review will focus on biofertilizers and their mechanisms of action, role in crop productivity and in biotic/abiotic stress tolerance.
Collapse
Affiliation(s)
- Parul Chaudhary
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Shivani Singh
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Anuj Chaudhary
- School of Agriculture and Environmental Science, Shobhit University, Gangoh, India
| | - Anita Sharma
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Govind Kumar
- Department of Crop Production, Central Institute for Subtropical Horticulture, Lucknow, India
| |
Collapse
|
16
|
Yue F, Zhang J, Xu J, Niu T, Lü X, Liu M. Effects of monosaccharide composition on quantitative analysis of total sugar content by phenol-sulfuric acid method. Front Nutr 2022; 9:963318. [PMID: 35983486 PMCID: PMC9378961 DOI: 10.3389/fnut.2022.963318] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Phenol-sulfuric acid method is one of the most common methods applied to the analysis of total sugar content during polysaccharides study. However, it was found that the results obtained from the phenol-sulfuric acid method was generally lower than the real total sugar content, especially when acidic monosaccharides were contained in the polysaccharides samples. Therefore, the present study focused to unveil the proposed problem. Based on the optimization of colorimetric conditions, such as optimal wave length of absorption, linearity range, color reaction time and temperature, it indicated that the phenol-sulfuric acid method was a convenient and accurate way for the total sugar content analysis. In addition, the color-rendering capabilities of 10 common monosaccharides were systematically analyzed to obtain a relative correction factor for each monosaccharide relative to glucose, which was proved to be the main reason for the deviation in the detection of total sugar content. Moreover, the key points during the application of phenol-sulfuric acid method were suggested. This study provides a scientific theoretical basis and a reliable experimental research method for the accurate determination of total sugar content by the phenol-sulfuric acid method, and which will also promote the application of this convenient method in the polysaccharides study.
Collapse
Affiliation(s)
- Fangfang Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jinrui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiaxin Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Tengfei Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Manshun Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,College of Enology, Northwest A&F University, Yangling, China
| |
Collapse
|
17
|
The Genome of Bacillus velezensis SC60 Provides Evidence for Its Plant Probiotic Effects. Microorganisms 2022; 10:microorganisms10040767. [PMID: 35456817 PMCID: PMC9025316 DOI: 10.3390/microorganisms10040767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/10/2022] Open
Abstract
Root colonization and plant probiotic function are important traits of plant growth-promoting rhizobacteria (PGPR). Bacillus velezensis SC60, a plant endophytic strain screened from Sesbania cannabina, has a strong colonization ability on various plant roots, which indicates that SC60 has a preferable adaptability to plants. However, the probiotic function of the strain SC60 is not well-understood. Promoting plant growth and suppressing soil-borne pathogens are key to the plant probiotic functions. In this study, the genetic mechanism of plant growth-promoting and antibacterial activity of the strain SC60 was analyzed by biological and bioinformatics methods. The complete genome size of strain SC60 was 3,962,671 bp, with 4079 predicted genes and an average GC content of 46.46%. SC60 was designated as Bacillus velezensis according to the comparative analysis, including average nucleotide polymorphism (ANI), digital DNA–DNA hybridization (dDDH), and phylogenetic analysis. Genomic secondary metabolite analyses indicated two clusters encoding potential new antimicrobials. The antagonism experiments revealed that strain SC60 had the ability to inhibit the growth of a variety of plant pathogens and its closely related strains of Bacillus spp., which was crucial to the rhizospheric competitiveness and growth-promoting effect of the strain. The present results further suggest that B. velezensis SC60 could be used as a PGPR strain to develop new biocontrol agents or microbial fertilizers.
Collapse
|