1
|
Molinet J, Stelkens R. The evolution of thermal performance curves in response to rising temperatures across the model genus yeast. Proc Natl Acad Sci U S A 2025; 122:e2423262122. [PMID: 40392856 DOI: 10.1073/pnas.2423262122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/21/2025] [Indexed: 05/22/2025] Open
Abstract
The maintenance of biodiversity crucially depends on the evolutionary potential of populations to adapt to environmental change. Accelerating climate change and extreme temperature events urge us to better understand and forecast evolutionary responses. Here, we harnessed the power of experimental evolution with the microbial model system yeast (Saccharomyces spp.) to measure the evolutionary potential of populations to adapt to future warming, in real-time and across the entire phylogenetic diversity of the genus. We tracked the evolution of thermal performance curves (TPCs) in populations of eight genetically and ecologically diverse species under gradually increasing temperature conditions, from 25 to 40 °C, for up to 600 generations. We found that evolving toward higher critical thermal limits generally came at a cost, causing a decrease in both thermal tolerance and maximum growth performance. The evolution of TPCs varied significantly between species with strong genotype-by-environment interactions, revealing two main trajectories: i) Warm-tolerant species showed an increase in both optimum growth temperature and thermal tolerance, consistent with the "hotter is wider" hypothesis. ii) Cold-tolerant species on the other hand evolved larger thermal breadth and higher thermal limits, but suffered from reduced maximum performance overall, consistent with the generalist or "a jack of all temperatures is a master of none" hypothesis. In addition, cold-tolerant species never reached the warm-tolerant species' upper thermal limits. Our results show that adaptive strategies to increasing temperatures are complex, highlighting the need to consider both within and between species diversity when predicting and managing the impacts of climate change on populations.
Collapse
Affiliation(s)
- Jennifer Molinet
- Department of Zoology, Stockholm University, Stockholm 106 91, Sweden
| | - Rike Stelkens
- Department of Zoology, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
2
|
Worthan SB, Grant MI, Behringer MG. Rho-dependent termination: a bacterial evolutionary capacitor for stress resistance. Transcription 2025:1-14. [PMID: 40044630 DOI: 10.1080/21541264.2025.2474367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Since the Modern Synthesis, interest has grown in resolving the "black box" between genotype and phenotype. Contained within this black box are highly plastic RNA and proteins with global effects on chromosome integrity and gene expression that serve as evolutionary capacitors - elements that enable the accumulation and buffering of genetic variation in normal conditions and reveal hidden genetic variation when induced by environmental stress. Discussion of evolutionary capacitors has primarily focused on eukaryotic translation factors and chaperones, such as Hsp90 and PSI+ prion. However, due to the coupling of transcription and translation in prokaryotes, transcription factors can be equally impactful in the modulation of gene expression and phenotypes. In this review, we discuss the prokaryotic transcription terminator Rho and how mutagenesis and plasticity of Rho influence epistasis, evolvability, and adaptation to stress in bacteria. We discuss the effects of variation in Rho generated by nature, laboratory mutagenesis, and experimental evolution; and how this variation is constrained or encouraged by Rho's extensive network of protein interactors. Exploring Rho's role as an evolutionary capacitor, along with identifying additional elements that can serve this function, can significantly advance our understanding of how organisms adapt to thrive in diverse environments.
Collapse
Affiliation(s)
- Sarah B Worthan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Megan I Grant
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Megan G Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
3
|
Jiao J, Lv X, Shen C, Morigen M. Genome and transcriptomic analysis of the adaptation of Escherichia coli to environmental stresses. Comput Struct Biotechnol J 2024; 23:2132-2140. [PMID: 38817967 PMCID: PMC11137339 DOI: 10.1016/j.csbj.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
In natural niches, bacteria are forced to spend most of their lives under various environmental stresses, such as nutrient limitation, heavy metal pollution, heat and antibiotic stress. To cope with adverse environments, bacterial genome can during the life cycle, produce potential adaptive mutants. The genomic changes, especially mutations, in the genes that encode RNA polymerase and transcription factors, might lead to variations in the transcriptome. These variations enable bacteria to cope with environmental stresses through physiological adaptation in response to stress. This paper reviews the recent contributions of genomic and transcriptomic analyses in understanding the adaption mechanism of Escherichia coli to environmental stresses. Various genomic changes have been observed in E. coli strains in laboratory or under natural stresses, including starvation, heavy metals, acidic conditions, heat shock and antibiotics. The mutations include slight changes (one to several nucleotides), deletions, insertions, chromosomal rearrangements and variations in copy numbers. The transcriptome of E. coli largely changes due to genomic mutations. However, the transcriptional profiles vary due to variations in stress selections. Cellular adaptation to the selections is associated with transcriptional changes resulting from genomic mutations. Changes in genome and transcriptome are cooperative and jointly affect the adaptation of E. coli to different environments. This comprehensive review reveals that coordination of genome mutations and transcriptional variations needs to be explored further to provide a better understanding of the mechanisms of bacterial adaptation to stresses.
Collapse
Affiliation(s)
- Jianlu Jiao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xiaoli Lv
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chongjie Shen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Morigen Morigen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
4
|
Woo S, Han YH, Lee HK, Baek D, Noh MH, Han S, Lim HG, Jung GY, Seo SW. Generation of a Vibrio-based platform for efficient conversion of raffinose through Adaptive Laboratory Evolution on a solid medium. Metab Eng 2024; 86:300-307. [PMID: 39489215 DOI: 10.1016/j.ymben.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/07/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Raffinose, a trisaccharide abundantly found in soybeans, is a potential alternative carbon source for biorefineries. Nevertheless, residual intermediate di- or monosaccharides and low catabolic efficiency limit raffinose use through conventional microbial hosts. This study presents a Vibrio-based platform to convert raffinose efficiently. Vibrio sp. dhg was selected as the starting strain for the Adaptive Laboratory Evolution (ALE) strategy to leverage its significantly higher metabolic efficiency. We conducted ALE on a solid minimal medium supplemented with raffinose to prevent the enrichment of undesired phenotypes due to the shared effect of extracellular raffinose hydrolysis among multiple strains. As a result, we generated the VRA10 strain that efficiently utilizes raffinose without leaving behind degraded di- or monosaccharides, achieving a notable growth rate (0.40 h-1) and raffinose consumption rate (1.2 g/gdcw/h). Whole genome sequencing and reverse engineering identified that a missense mutation in the melB gene (encoding a melibiose/raffinose:sodium symporter) and the deletion of the two galR genes (encoding transcriptional repressors for galactose catabolism) facilitated rapid raffinose utilization. The further engineered strain produced 6.2 g/L of citramalate from 20 g/L of raffinose. This study will pave the way for the efficient utilization of diverse raffinose-rich byproducts and the expansion of alternative carbon streams in biorefinery applications.
Collapse
Affiliation(s)
- Sunghwa Woo
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Yong Hee Han
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro 77, Gwangju, 61186, South Korea
| | - Hye Kyung Lee
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Dongyeop Baek
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Myung Hyun Noh
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jonggaro, Junggu, Ulsan, 44429, South Korea
| | - Sukjae Han
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hyun Gyu Lim
- Department of Biological Sciences and Bioengineering, Inha University, Inha-ro 100, Michuhol-gu, Incheon, 22212, South Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea; Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea.
| | - Sang Woo Seo
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; School of Chemical and Biological Engineering, South Korea; Institute of Chemical Processes, South Korea; Bio-MAX Institute, South Korea; Institute of Bio Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
5
|
Santos MA, Carromeu-Santos A, Quina AS, Antunes MA, Kristensen TN, Santos M, Matos M, Fragata I, Simões P. Experimental Evolution in a Warming World: The Omics Era. Mol Biol Evol 2024; 41:msae148. [PMID: 39034684 PMCID: PMC11331425 DOI: 10.1093/molbev/msae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
A comprehensive understanding of the genetic mechanisms that shape species responses to thermal variation is essential for more accurate predictions of the impacts of climate change on biodiversity. Experimental evolution with high-throughput resequencing approaches (evolve and resequence) is a highly effective tool that has been increasingly employed to elucidate the genetic basis of adaptation. The number of thermal evolve and resequence studies is rising, yet there is a dearth of efforts to integrate this new wealth of knowledge. Here, we review this literature showing how these studies have contributed to increase our understanding on the genetic basis of thermal adaptation. We identify two major trends: highly polygenic basis of thermal adaptation and general lack of consistency in candidate targets of selection between studies. These findings indicate that the adaptive responses to specific environments are rather independent. A review of the literature reveals several gaps in the existing research. Firstly, there is a paucity of studies done with organisms of diverse taxa. Secondly, there is a need to apply more dynamic and ecologically relevant thermal environments. Thirdly, there is a lack of studies that integrate genomic changes with changes in life history and behavioral traits. Addressing these issues would allow a more in-depth understanding of the relationship between genotype and phenotype. We highlight key methodological aspects that can address some of the limitations and omissions identified. These include the need for greater standardization of methodologies and the utilization of new technologies focusing on the integration of genomic and phenotypic variation in the context of thermal adaptation.
Collapse
Affiliation(s)
- Marta A Santos
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Carromeu-Santos
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Quina
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Marta A Antunes
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | | | - Mauro Santos
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GBBE), Universitat Autonòma de Barcelona, Bellaterra, Spain
| | - Margarida Matos
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Inês Fragata
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Simões
- CE3C—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
6
|
Caro-Astorga J, Meyerowitz JT, Stork DA, Nattermann U, Piszkiewicz S, Vimercati L, Schwendner P, Hocher A, Cockell C, DeBenedictis E. Polyextremophile engineering: a review of organisms that push the limits of life. Front Microbiol 2024; 15:1341701. [PMID: 38903795 PMCID: PMC11188471 DOI: 10.3389/fmicb.2024.1341701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Nature exhibits an enormous diversity of organisms that thrive in extreme environments. From snow algae that reproduce at sub-zero temperatures to radiotrophic fungi that thrive in nuclear radiation at Chernobyl, extreme organisms raise many questions about the limits of life. Is there any environment where life could not "find a way"? Although many individual extremophilic organisms have been identified and studied, there remain outstanding questions about the limits of life and the extent to which extreme properties can be enhanced, combined or transferred to new organisms. In this review, we compile the current knowledge on the bioengineering of extremophile microbes. We summarize what is known about the basic mechanisms of extreme adaptations, compile synthetic biology's efforts to engineer extremophile organisms beyond what is found in nature, and highlight which adaptations can be combined. The basic science of extremophiles can be applied to engineered organisms tailored to specific biomanufacturing needs, such as growth in high temperatures or in the presence of unusual solvents.
Collapse
Affiliation(s)
| | | | - Devon A. Stork
- Pioneer Research Laboratories, San Francisco, CA, United States
| | - Una Nattermann
- Pioneer Research Laboratories, San Francisco, CA, United States
| | | | - Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | | | - Antoine Hocher
- London Institute of Medical Sciences, London, United Kingdom
| | - Charles Cockell
- UK Centre for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Erika DeBenedictis
- The Francis Crick Institute, London, United Kingdom
- Pioneer Research Laboratories, San Francisco, CA, United States
| |
Collapse
|
7
|
Venkataraman P, Nagendra P, Ahlawat N, Brajesh RG, Saini S. Convergent genetic adaptation of Escherichia coli in minimal media leads to pleiotropic divergence. Front Mol Biosci 2024; 11:1286824. [PMID: 38660375 PMCID: PMC11039892 DOI: 10.3389/fmolb.2024.1286824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/15/2024] [Indexed: 04/26/2024] Open
Abstract
Adaptation in an environment can either be beneficial, neutral or disadvantageous in another. To test the genetic basis of pleiotropic behaviour, we evolved six lines of E. coli independently in environments where glucose and galactose were the sole carbon sources, for 300 generations. All six lines in each environment exhibit convergent adaptation in the environment in which they were evolved. However, pleiotropic behaviour was observed in several environmental contexts, including other carbon environments. Genome sequencing reveals that mutations in global regulators rpoB and rpoC cause this pleiotropy. We report three new alleles of the rpoB gene, and one new allele of the rpoC gene. The novel rpoB alleles confer resistance to Rifampicin, and alter motility. Our results show how single nucleotide changes in the process of adaptation in minimal media can lead to wide-scale pleiotropy, resulting in changes in traits that are not under direct selection.
Collapse
Affiliation(s)
| | | | | | | | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
8
|
Bullivant A, Lozano-Huntelman N, Tabibian K, Leung V, Armstrong D, Dudley H, Savage VM, Rodríguez-Verdugo A, Yeh PJ. Evolution Under Thermal Stress Affects Escherichia coli's Resistance to Antibiotics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582334. [PMID: 38464198 PMCID: PMC10925296 DOI: 10.1101/2024.02.27.582334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Exposure to both antibiotics and temperature changes can induce similar physiological responses in bacteria. Thus, changes in growth temperature may affect antibiotic resistance. Previous studies have found that evolution under antibiotic stress causes shifts in the optimal growth temperature of bacteria. However, little is known about how evolution under thermal stress affects antibiotic resistance. We examined 100+ heat-evolved strains of Escherichia coli that evolved under thermal stress. We asked whether evolution under thermal stress affects optimal growth temperature, if there are any correlations between evolving in high temperatures and antibiotic resistance, and if these strains' antibiotic efficacy changes depending on the local environment's temperature. We found that: (1) surprisingly, most of the heat-evolved strains displayed a decrease in optimal growth temperature and overall growth relative to the ancestor strain, (2) there were complex patterns of changes in antibiotic resistance when comparing the heat-evolved strains to the ancestor strain, and (3) there were few significant correlations among changes in antibiotic resistance, optimal growth temperature, and overall growth.
Collapse
Affiliation(s)
- Austin Bullivant
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | | | - Kevin Tabibian
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | - Vivien Leung
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | - Dylan Armstrong
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | - Henry Dudley
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | - Van M. Savage
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | | | - Pamela J Yeh
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
9
|
Cordell WT, Avolio G, Takors R, Pfleger BF. Milligrams to kilograms: making microbes work at scale. Trends Biotechnol 2023; 41:1442-1457. [PMID: 37271589 DOI: 10.1016/j.tibtech.2023.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
If biomanufacturing can become a sustainable route for producing chemicals, it will provide a critical step in reducing greenhouse gas emissions to fight climate change. However, efforts to industrialize microbial synthesis of chemicals have met with varied success, due, in part, to challenges in translating laboratory successes to industrial scale. With a particular focus on Escherichia coli, this review examines the lessons learned when studying microbial physiology and metabolism under conditions that simulate large-scale bioreactors and methods to minimize cellular waste through reduction of maintenance energy, optimizing the stress response and minimizing culture heterogeneity. With general strategies to overcome these challenges, biomanufacturing process scale-up could be de-risked and the time and cost of bringing promising syntheses to market could be reduced.
Collapse
Affiliation(s)
- William T Cordell
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gennaro Avolio
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart 70569, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart 70569, Germany
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Center Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
10
|
Kingma E, Diepeveen ET, Iñigo de la Cruz L, Laan L. Pleiotropy drives evolutionary repair of the responsiveness of polarized cell growth to environmental cues. Front Microbiol 2023; 14:1076570. [PMID: 37520345 PMCID: PMC10382278 DOI: 10.3389/fmicb.2023.1076570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
The ability of cells to translate different extracellular cues into different intracellular responses is vital for their survival in unpredictable environments. In Saccharomyces cerevisiae, cell polarity is modulated in response to environmental signals which allows cells to adopt varying morphologies in different external conditions. The responsiveness of cell polarity to extracellular cues depends on the integration of the molecular network that regulates polarity establishment with networks that signal environmental changes. The coupling of molecular networks often leads to pleiotropic interactions that can make it difficult to determine whether the ability to respond to external signals emerges as an evolutionary response to environmental challenges or as a result of pleiotropic interactions between traits. Here, we study how the propensity of the polarity network of S. cerevisiae to evolve toward a state that is responsive to extracellular cues depends on the complexity of the environment. We show that the deletion of two genes, BEM3 and NRP1, disrupts the ability of the polarity network to respond to cues that signal the onset of the diauxic shift. By combining experimental evolution with whole-genome sequencing, we find that the restoration of the responsiveness to these cues correlates with mutations in genes involved in the sphingolipid synthesis pathway and that these mutations frequently settle in evolving populations irrespective of the complexity of the selective environment. We conclude that pleiotropic interactions make a significant contribution to the evolution of networks that are responsive to extracellular cues.
Collapse
|
11
|
Abstract
Sunlight drives phototrophic metabolism, which affects redox conditions and produces substrates for nonphototrophs. These environmental parameters fluctuate daily due to Earth’s rotation, and nonphototrophic organisms can therefore benefit from the ability to respond to, or even anticipate, such changes. Circadian rhythms, such as daily changes in body temperature, in host organisms can also affect local conditions for colonizing bacteria. Here, we investigated the effects of light/dark and temperature cycling on biofilms of the opportunistic pathogen Pseudomonas aeruginosa PA14. We grew biofilms in the presence of a respiratory indicator dye and found that enhanced dye reduction occurred in biofilm zones that formed during dark intervals and at lower temperatures. This pattern formation occurred with cycling of blue, red, or far-red light, and a screen of mutants representing potential sensory proteins identified two with defects in pattern formation, specifically under red light cycling. We also found that the physiological states of biofilm subzones formed under specific light and temperature conditions were retained during subsequent condition cycling. Light/dark and temperature cycling affected expression of genes involved in primary metabolic pathways and redox homeostasis, including those encoding electron transport chain components. Consistent with this, we found that cbb3-type oxidases contribute to dye reduction under light/dark cycling conditions. Together, our results indicate that cyclic changes in light exposure and temperature have lasting effects on redox metabolism in biofilms formed by a nonphototrophic, pathogenic bacterium.
Collapse
|