1
|
Wang P, Zeng Y, Liu J, Wang L, Yang M, Zhou J. Antimicrobial and anti-biofilm effects of dihydroartemisinin-loaded chitosan nanoparticles against methicillin-resistant Staphylococcus aureus. Microb Pathog 2025; 199:107208. [PMID: 39657894 DOI: 10.1016/j.micpath.2024.107208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
The formation of biofilms enhances bacterial antibiotic resistance, posing significant challenges to clinical treatment. Methicillin-resistant Staphylococcus aureus (MRSA) is a primary pathogen in biofilm-associated infections. Its high antibiotic resistance and incidence rates make it a major clinical challenge, underscoring the urgent need for novel therapeutic strategies. Building on previous research, this study employs nanotechnology to fabricate dihydroartemisinin-chitosan nanoparticles (DHA-CS NPs) and, for the first time, applies them to the treatment of MRSA biofilm infections. The antibacterial and anti-biofilm activities of these compounds were evaluated, and their potential mechanisms of action were preliminarily explored. The results demonstrated that the DHA-CS NPs exhibited a minimum inhibitory concentration (MIC) of15 μg/mLand a minimum bactericidal concentration (MBC) of 30 μg/mL. At 15 μg/mL, the DHA-CS NPs significantly inhibited MRSA biofilm formation (P < 0.001),while at 7.5 μg/mL, they dispersed 67.4 ± 3.77 % of the preformed biofilms (P < 0.001). Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) confirmed the disruption of MRSA biofilms. Mechanistic studies, including phenol-sulfuric acid assays, static biofilm microtiter plate assays, and RT-qPCR, revealed that the DHA-CS NPs inhibited the synthesis of extracellular polymeric substances (EPS), suppressed the release of extracellular DNA (eDNA), and downregulated key biofilm-related genes (icaA, sarA, cidA, and agrA). These findings suggest that DHA-CS NPs hold significant promise for inhibiting and eradicating MRSA biofilms, providing a theoretical basis for the development of novel antibiofilm therapies.
Collapse
Affiliation(s)
- Peike Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yali Zeng
- Mianyang 404 Hospital, Mianyang, China.
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Lin Wang
- Mianyang 404 Hospital, Mianyang, China
| | - Min Yang
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Jian Zhou
- School of Public Health, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Summer M, Ali S, Tahir HM, Abaidullah R, Fiaz U, Mumtaz S, Fiaz H, Hassan A, Mughal TA, Farooq MA. Mode of Action of Biogenic Silver, Zinc, Copper, Titanium and Cobalt Nanoparticles Against Antibiotics Resistant Pathogens. J Inorg Organomet Polym Mater 2024; 34:1417-1451. [DOI: 10.1007/s10904-023-02935-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 08/04/2024]
|
3
|
El-Sherbiny MM, Orif MI, El-Hefnawy ME, Alhayyani S, Al-Goul ST, Elekhtiar RS, Mahrous H, Tayel AA. Fabrication of bioactive nanocomposites from chitosan, cress mucilage, and selenium nanoparticles with powerful antibacterial and anticancerous actions. Front Microbiol 2023; 14:1210780. [PMID: 37547689 PMCID: PMC10402636 DOI: 10.3389/fmicb.2023.1210780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Natural bioactive alternatives are the utmost requests from researchers to provide biosafe and effectual health-guarding agents. The biopolymers chitosan nanoparticles (NCT), mucilage of cress seed (GCm; Lepidium sativum), and GCm-mediated selenium nanoparticles (GCm/SeNPs) were innovatively employed for fabricating novel bioactive natural nanocomposites (NCs) with elevated bioactivities as bactericidal (against Salmonella typhimurium and Staphylococcus aureus) and anticancer (against CaCo-2 and HeLa cells). The SeNPs were successfully generated with GCm, and different NCs formulations were fabricated from NCT:GCm/SeNPs amalgam ratios including T1, T2, and T3 with 2:1, 1:1, and 1:2 ratios, respectively. The infrared analysis of synthesized molecules appointed apparent physical interactions among interacted molecules. The average particles' sizes and charges of molecules/NCs were (12.7, 316.4, 252.8, and 127.3 nm) and (-6.9, +38.7, +26.2, and -25.8 mV) for SeNPs, T1, T2, and T3, respectively. The biocidal assessment of NCs indicated that T1 was the strongest antibacterial formulation, whereas T3 was the superior anticancer amalgam. These NCs formulations could exceed the biocidal potentialities of standard biocides. T1-NC could cause severe destructions/deformations in challenged S. typhimurium within 9 h, whereas T3-NCs induced apparent fluorescent apoptosis signs in treated HeLa cells. The prospective applications innovatively designed biocidal natural NCs that are recommended for controlling pathogenic bacteria and fighting cancerous cells.
Collapse
Affiliation(s)
- Mohsen M. El-Sherbiny
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed I. Orif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed E. El-Hefnawy
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Sultan Alhayyani
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Soha T. Al-Goul
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Rawan S. Elekhtiar
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Hoda Mahrous
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Ahmed A. Tayel
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| |
Collapse
|
4
|
Chitosan nanoparticles efficiently enhance the dispersibility, stability and selective antibacterial activity of insoluble isoflavonoids. Int J Biol Macromol 2023; 232:123420. [PMID: 36708890 DOI: 10.1016/j.ijbiomac.2023.123420] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Natural isoflavonoids have attracted much attention in the treatment of oral bacterial infections and other diseases due to their excellent antibacterial activity and safety. However, their poor water solubility, instability and low bioavailability seriously limited the practical application. In this study, licoricidin-loaded chitosan nanoparticles (LC-CSNPs) were synthesized by self-assembly for improving the dispersion of licoricidin (LC) and strengthening antibacterial and anti-biofilm performance. Compared to free LC, the minimum inhibitory concentration of LC-CSNPs against Streptococcus mutans decreased >2-fold to 26 μg/mL, and LC-CSNPs could ablate 70 % biofilms at this concentration. The enhanced antibacterial activity was mainly attributed to the spontaneous surface adsorption of LC-CSNPs on cell membranes through electrostatic interactions. More valuably, LC-CSNPs had no inhibitory effect on the growth of probiotic. Mechanism study indicated that LC-CSNPs altered the transmembrane potential to cause bacterial cells in a hyperpolarized state, generating ROS to cause cells damage and eventually apoptosis. This work demonstrated that the chitosan-based nanoparticles have great potential in enhancing the dispersibility and antibacterial activity of insoluble isoflavonoids, offering a promising therapeutic strategy for oral infections.
Collapse
|
5
|
Fluorescent silicon-doped polymer dots: Preparation and its multiple applications as antibacterial, solid fluorescence and reducing agents. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Li K, Zhou D, Cui H, Mo G, Liu Y, Zheng K, Zhou Z, Li J, Dai P, Sun J, Zhang Y, Gao J. Size-transformable gelatin/nanochitosan/doxorubicin nanoparticles with sequentially triggered drug release for anticancer therapy. Colloids Surf B Biointerfaces 2022; 220:112927. [DOI: 10.1016/j.colsurfb.2022.112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022]
|
7
|
Li F, Mao C, Yeh S, Xin J, Wang P, Shi Q, Ming X. Combinatory therapy of MRP1-targeted photoimmunotherapy and liposomal doxorubicin promotes the antitumor effect for chemoresistant small cell lung cancer. Int J Pharm 2022; 625:122076. [PMID: 35931394 DOI: 10.1016/j.ijpharm.2022.122076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/24/2022] [Accepted: 07/31/2022] [Indexed: 11/20/2022]
Abstract
Small cell lung cancer (SCLC), considered a mortal recalcitrant cancer, is a severe healthcare issue because of its poor prognosis, early metastasis, drug resistance and limited clinical treatment options. In our previous study, we established a MRP1-targeted antibody-IR700 system (Mab-IR700) for near infrared photoimmunotherapy (NIR-PIT) which exhibited a promising therapeutic effect on drug resistant H69AR cells both in vitro and in vivo, though the tumor growth suppression effect did not last long with a single round of PIT treatment. To achieve a better anticancer effect, we have combined Mab-IR700-mediated NIR-PIT with liposomal doxorubicin (Doxil®) and investigated the in vitro and in vivo cytotoxicity by using a H69AR/3T3 cell co-culture model in which 3T3 cells were used to mimic stromal cells. Cytotoxicity experiments demonstrated the specificity of Mab-IR700 to H69AR cells, while cytotoxicity and flow cytometry experiments confirmed that H69AR cells were doxorubicin-resistant. Compared with Mab-IR700-mediated PIT or Doxil-mediated chemotherapy, the combination therapy exhibited the best cell killing effect in vitro and superior tumor growth inhibition and survival prolongation effect in vivo. Super enhanced permeability and retention (SUPR) effect was observed in both co-culture spheroids and tumor-bearing mice. Owing to an approximately 9-fold greater accumulation of Doxil within the tumors, NIR-PIT combined with Doxil resulted in enhanced antitumor effects compared to NIR-PIT alone. This photoimmunochemotherapy is a practical strategy for the treatment of chemoresistant SCLC and should be further investigated for clinical translation.
Collapse
Affiliation(s)
- Fang Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China; Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA.
| | - Chengqiong Mao
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA
| | - Stacy Yeh
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA
| | - Junbo Xin
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Peng Wang
- School of Pharmaceutical Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Xin Ming
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA.
| |
Collapse
|