1
|
Alwayli D, Jiang X, Liang J, Shah SRH, Ullah A, Abusidu MFZ, Shu W. Adjuvant Effect of Lactobacillus paracasei in Sublingual Immunotherapy of Asthmatic Mice. Pharmaceuticals (Basel) 2024; 17:1580. [PMID: 39770422 PMCID: PMC11678203 DOI: 10.3390/ph17121580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Sublingual immunotherapy (SLIT) has shown promise in mitigating allergic asthma symptoms; nevertheless, its high dose and prolonged duration of treatment raise safety concerns. This study explored the potential of Lactobacillus paracasei (L. paracasei) to enhance the effectiveness of SLIT in a mouse model of allergic asthma. Methods: Allergic asthma was induced in Balb/c mice following sensitization and challenge with a house dust mite (HDM) allergen. Subsequently, the mice were subjected to SLIT (66 and 132 µg) either alone or in combination with L. paracasei supplementation. Asthma-associated parameters, including rubbing frequency, IgE level, cytokine profiles, and histological changes, were evaluated to assess treatment efficacy. Results: mice that received SLIT 132 µg combined with the probiotic (combined 132) demonstrated a significant reduction in allergic symptoms (rubbing). This treatment strategy led to a marked IgE and eosinophil level decrease in serum; an increase in anti-inflammatory cytokines like IFN-γ and IL-10; and a reduction in pro-inflammatory cytokines IL-17 and TNF-α. The combination therapy also mitigated lung inflammation and supported the restoration of the structural integrity of the colon, promoting the recovery of goblet cells and mucus secretion. Probiotic treatment alone also effectively reduced IgE levels, increased IFN-γ, and decreased levels of IL-17 and TNF-α. Conclusions: The adjuvant effect of L. paracasei in enhancing SLIT represents a promising approach for improving asthma treatment efficacy.
Collapse
Affiliation(s)
- Dhafer Alwayli
- Department of Pathogen Biology and Microecology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; (D.A.); (X.J.); (J.L.); (S.R.H.S.); (A.U.)
| | - Xiaoli Jiang
- Department of Pathogen Biology and Microecology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; (D.A.); (X.J.); (J.L.); (S.R.H.S.); (A.U.)
| | - Jiaxu Liang
- Department of Pathogen Biology and Microecology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; (D.A.); (X.J.); (J.L.); (S.R.H.S.); (A.U.)
| | - Syed Rafiq Hussain Shah
- Department of Pathogen Biology and Microecology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; (D.A.); (X.J.); (J.L.); (S.R.H.S.); (A.U.)
| | - Atta Ullah
- Department of Pathogen Biology and Microecology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; (D.A.); (X.J.); (J.L.); (S.R.H.S.); (A.U.)
| | - Mohammed F. Z. Abusidu
- Department of Biotechnology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China;
| | - Wen Shu
- Department of Pathogen Biology and Microecology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; (D.A.); (X.J.); (J.L.); (S.R.H.S.); (A.U.)
| |
Collapse
|
2
|
Zhang Z, Cai B, Sun Y, Deng H, Wang H, Qiao Z. Alteration of the gut microbiota and metabolite phenylacetylglutamine in patients with severe chronic heart failure. Front Cardiovasc Med 2023; 9:1076806. [PMID: 36704458 PMCID: PMC9871785 DOI: 10.3389/fcvm.2022.1076806] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Chronic Heart Failure (CHF) is the end result of nearly all cardiovascular disease and is the leading cause of deaths worldwide. Studies have demonstrated that intestinal flora has a close relationship with the development of Cardiovascular Disease (CVD) and plays a vital role in the disease evolution process. Phenylacetylglutamine (PAGln) a metabolite of the intestinal flora, is one of the common chronic kidney disease toxins. Its concentrations in plasma were higher in patients with major adverse cardiovascular events (MACE) however, its variation in patients with various degrees of CHF has rarely been reported. Therefore, we collected stool and plasma samples from 22 healthy controls, 29 patients with NYHA Class III and 29 patients with NYHA Class IV CHF (NYHA stands for New York Heart Association) from the Department of Cardiology of Shanghai Fengxian District Central Hospital. Next, we analyzed these samples by performing bacterial 16S ribosomal RNA gene sequencing and liquid chromatography tandem mass spectrometry. The result shows: The Chao 1 index was significantly lower in both NYHA class III and NYHA class IV than it was in the control group. The beta diversity was substantially dissimilar across the three groups. The linear discriminant analysis effect size analysis (LEfSe) showed that the bacterial species with the largest differences were Lachnospiraceae in control group, Enterobacteriaceae in NYHA class III, and Escherichia in NYHA class IV. The concentration of PAGln was significantly different between CHF and control groups and increased with the severity of heart failure. Finally, the correlation analysis represented that Parabacteroides and Bacteroides were negatively correlated to brain natriuretic peptide (BNP) and PAGln; Romboutsia and Blautia adversely associated with PAGln; Klebsiella was positively interrelated with BNP; Escherichia-Shigella was positively correlated with PAGln and BNP; Alistipes was contrasted with BNP; and Parabacteroides was negatively correlated with the left ventricular end-diastolic diameter (LVEDD). This study presented that the intestinal flora and its metabolite PAGln were altered with different grades of CHF and illustrated the effects of the gut flora and its metabolite on CHF.
Collapse
Affiliation(s)
- Zhendong Zhang
- Department of Cardiology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China,Department of Cardiology, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Bin Cai
- Department of Cardiology, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Yanzhuan Sun
- Department of Cardiology, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Haiyan Deng
- Department of Cardiology, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Hongwei Wang
- Department of Cardiology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China,Department of Cardiology, Shanghai Fengxian District Central Hospital, Shanghai, China,*Correspondence: Hongwei Wang,
| | - Zengyong Qiao
- Department of Cardiology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China,Department of Cardiology, Shanghai Fengxian District Central Hospital, Shanghai, China,Zengyong Qiao,
| |
Collapse
|
3
|
Liu YK, Liu GH, Liu L, Wang AB, Cheng TY, Duan DY. Comparative analysis of the anticoagulant activities and immunogenicity of HSC70 and HSC70 TKD of Haemaphysalis flava. Parasit Vectors 2022; 15:411. [PMID: 36335395 PMCID: PMC9636643 DOI: 10.1186/s13071-022-05521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Haemaphysalis flava is a hematophagous ectoparasite that acquires the nutrition needed for development and reproduction by sucking blood and digesting the blood meal. During blood-sucking and blood-meal digestion, the prevention of blood coagulation is important for this tick. Previous studies have shown that heat shock cognate 70 (HSC70) protein has certain anticoagulant activities, but its immunogenicity remains unclear. Also, whether the mutation of individual bases of the TKD-like peptide of HSC70 through the overlap extension method can change its anticoagulant activities and immunogenicity remains to be investigated. METHODS The gene encoding the HSC70 protein was cloned from a complementary DNA library synthesized from H. flava. The coding gene of the TKD-like peptide of HSC70 was mutated into a TKD peptide coding gene (HSC70TKD) using the overlap extension method. Escherichia coli prokaryotic expression plasmids were constructed to obtain the recombinant proteins of HSC70 (rHSC70) and HSC70TKD (rHSC70TKD). The purified rHSC70 and rHSC70TKD were evaluated at different concentrations for anticoagulant activities using four in vitro clotting assays. Emulsifying recombinant proteins with complete and incomplete Freund's adjuvants were subcutaneously immunized in Sprague Dawley rats. The serum antibody titers and serum concentrations of interferon-gamma (IFN-γ) and interleukin-4 (IL-4) were detected using an indirect enzyme-linked immunosorbent assay to assess the immunogenicity of rHSC70 and rHSC70TKD. RESULTS The open reading frame of HSC70 was successfully amplified and found to have a length of 1958 bp. The gene encoding the TKD-like peptide of HSC70 was artificially mutated, with the 1373-position adenine (A) of the original sequence mutated into guanine (G), the 1385-position cytosine (C) mutated into G and the 1386-position G mutated into C. rHSC70 and rHSC70TKD that fused with His-tag were obtained using the expression plasmids pET-28a-HSC70 and pET-28a-HSC70TKD, respectively. rHSC70 and rHSC70TKD prolonged the thrombin time (TT) and reduced the fibrinogen (FIB) content in the plasma, but did not affect the prothrombin time (PT) or activated partial thromboplastin time (APTT) when compared to the negative control. Interestingly, the ability of rHSC70TKD to prolong the TT and reduce the FIB content in the plasma was better than that of rHSC70. The specific antibody titers of both rHSC70 and rHSC70TKD in rat serum reached 1:124,000 14 days after the third immunization. The serum concentration of IFN-γ in the rHSC70TKD group was higher than that in the rHSC70 group. The rHSC70 group has the highest serum concentration of IL-4, and the serum concentration of IL-4 in the rHSC70TKD group was higher than that in the negative group. CONCLUSIONS rHSC70 and rHSC70TKD exhibited anticoagulant activities by prolonging the TT and reducing the FIB content in vitro. rHSC70TKD had better anticoagulant activities than rHSC70. Both rHSC70 and rHSC70TKD had good immunogenicity and induced humoral and cellular immunity.
Collapse
Affiliation(s)
- Yu-Ke Liu
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - Guo-Hua Liu
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - Lei Liu
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - Ai-Bing Wang
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - Tian-Yin Cheng
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| | - De-Yong Duan
- grid.257160.70000 0004 1761 0331Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 Hunan Province China
| |
Collapse
|
4
|
Drapkina OM, Ashniev GA, Zlobovskaya OA, Yafarova AA, Dementeva EV, Kaburova AN, Meshkov IO, Sheptulina AF, Kiselev AR, Kontsevaya AV, Zhamalov LM, Koretskiy SN, Pokrovskaya MS, Akinshina AI, Zagaynova AV, Lukashina MV, Kirillov AV, Abramov IA, Tolkacheva LR, Bikaeva IO, Glazunova EV, Shipulin GA, Bobrova MM, Makarov VV, Keskinov AA, Yudin VS, Yudin SM. Diversities in the Gut Microbial Patterns in Patients with Atherosclerotic Cardiovascular Diseases and Certain Heart Failure Phenotypes. Biomedicines 2022; 10:2762. [PMID: 36359282 PMCID: PMC9687836 DOI: 10.3390/biomedicines10112762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 03/02/2024] Open
Abstract
To continue progress in the treatment of cardiovascular disease, there is a need to improve the overall understanding of the processes that contribute to the pathogenesis of cardiovascular disease (CVD). Exploring the role of gut microbiota in various heart diseases is a topic of great interest since it is not so easy to find such reliable connections despite the fact that microbiota undoubtedly affect all body systems. The present study was conducted to investigate the composition of gut microbiota in patients with atherosclerotic cardiovascular disease (ASCVD) and heart failure syndromes with reduced ejection fraction (HFrEF) and HF with preserved EF (HFpEF), and to compare these results with the microbiota of individuals without those diseases (control group). Fecal microbiota were evaluated by three methods: living organisms were determined using bacterial cultures, total DNA taxonomic composition was estimated by next generation sequencing (NGS) of 16S rRNA gene (V3-V4) and quantitative assessment of several taxa was performed using qPCR (quantitative polymerase chain reaction). Regarding the bacterial culture method, all disease groups demonstrated a decrease in abundance of Enterococcus faecium and Enterococcus faecalis in comparison to the control group. The HFrEF group was characterized by an increased abundance of Streptococcus sanguinus and Streptococcus parasanguinis. NGS analysis was conducted at the family level. No significant differences between patient's groups were observed in alpha-diversity indices (Shannon, Faith, Pielou, Chao1, Simpson, and Strong) with the exception of the Faith index for the HFrEF and control groups. Erysipelotrichaceae were significantly increased in all three groups; Streptococcaceae and Lactobacillaceae were significantly increased in ASCVD and HFrEF groups. These observations were indirectly confirmed with the culture method: two species of Streptococcus were significantly increased in the HFrEF group and Lactobacillus plantarum was significantly increased in the ASCVD group. The latter observation was also confirmed with qPCR of Lactobacillus sp. Acidaminococcaceae and Odoribacteraceae were significantly decreased in the ASCVD and HFrEF groups. Participants from the HFpEF group showed the least difference compared to the control group in all three study methods. The patterns found expand the knowledge base on possible correlations of gut microbiota with cardiovascular diseases. The similarities and differences in conclusions obtained by the three methods of this study demonstrate the need for a comprehensive approach to the analysis of microbiota.
Collapse
Affiliation(s)
- Oxana M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - German A. Ashniev
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Olga A. Zlobovskaya
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Adel A. Yafarova
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Elena V. Dementeva
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Anastasia N. Kaburova
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Ivan O. Meshkov
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Anna F. Sheptulina
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Anton R. Kiselev
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Anna V. Kontsevaya
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Linar M. Zhamalov
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Sergey N. Koretskiy
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Mariya S. Pokrovskaya
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Alexandra I. Akinshina
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Anjelica V. Zagaynova
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Mariia V. Lukashina
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Andrey V. Kirillov
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Ivan A. Abramov
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Larisa R. Tolkacheva
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Irina O. Bikaeva
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Evgeniya V. Glazunova
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, 119121 Moscow, Russia
| | - German A. Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Maria M. Bobrova
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Valentin V. Makarov
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Anton A. Keskinov
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Vladimir S. Yudin
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Sergey M. Yudin
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, 119121 Moscow, Russia
| |
Collapse
|
5
|
Aerosol Inhalation of Heat-Killed Clostridium butyricum CGMCC0313-1 Alleviates Allergic Airway Inflammation in Mice. J Immunol Res 2022; 2022:8447603. [PMID: 36033385 PMCID: PMC9410851 DOI: 10.1155/2022/8447603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Epidemiological studies have shown that exposure to beneficial microorganisms can reduce the risk of asthma, but the clinical use of live probiotics is controversial due to the risk of infection. As heat-killed probiotics can also exhibit immunomodulatory activity, this study is aimed at investigating whether heat-killed Clostridium butyricum (HKCB) CGMCC0313-1 could reduce allergic airway inflammation in an ovalbumin-induced mouse model. Mice received aerosol inhalation of HKCB, oral administration of HKCB, or oral administration of live Clostridium butyricum (CB) during sensitization. Bronchoalveolar lavage fluid cell number, histology, and levels of the cytokines interferon-gamma and IL-4, the autophagy-related proteins LC3B, Beclin1, and p62, and members of the nuclear factor kappa B (NF-κB)/NLRP3 inflammasome signaling pathway were examined. Our results demonstrated that aerosol inhalation of HKCB, oral HKCB administration, and oral live CB administration alleviated allergic airway inflammation and mucus secretion in allergic mice. Aerosol inhalation of HKCB was the most effective method; it restored the Th1/Th2 balance, ameliorated autophagy, and inhibited the NF-κB/NLRP3 inflammasome signaling pathway in the lungs of allergic mice. Thus, aerosol inhalation of HKCB could be a promising strategy for the prevention or treatment of asthma.
Collapse
|
6
|
Sun W, Du D, Fu T, Han Y, Li P, Ju H. Alterations of the Gut Microbiota in Patients With Severe Chronic Heart Failure. Front Microbiol 2022; 12:813289. [PMID: 35173696 PMCID: PMC8843083 DOI: 10.3389/fmicb.2021.813289] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic heart failure (CHF) is the final outcome of almost all forms of cardiovascular diseases, remaining the main cause of mortality worldwide. Accumulating evidence is focused on the roles of gut microbial community in cardiovascular disease, but few studies have unveiled the alterations and further directions of gut microbiota in severe CHF patients. Aimed to investigate this deficiency, fecal samples from 29 CHF patients diagnosed with NYHA Class III-IV and 30 healthy controls were collected and then analyzed using bacterial 16S rRNA gene sequencing. As a result, there were many significant differences between the two groups. Firstly, the phylum Firmicutes was found to be remarkably decreased in severe CHF patients, and the phylum Proteobacteria was the second most abundant phyla in severe CHF patients instead of phylum Bacteroides strangely. Secondly, the α diversity indices such as chao1, PD-whole-tree and Shannon indices were significantly decreased in the severe CHF versus the control group, as well as the notable difference in β-diversity between the two groups. Thirdly, our result revealed a remarkable decrease in the abundance of the short-chain fatty acids (SCFA)-producing bacteria including genera Ruminococcaceae UCG-004, Ruminococcaceae UCG-002, Lachnospiraceae FCS020 group, Dialister and the increased abundance of the genera in Enterococcus and Enterococcaceae with an increased production of lactic acid. Finally, the alternation of the gut microbiota was presumably associated with the function including Cell cycle control, cell division, chromosome partitioning, Amino acid transport and metabolism and Carbohydrate transport and metabolism through SCFA pathway. Our findings provide the direction and theoretical knowledge for the regulation of gut flora in the treatment of severe CHF.
Collapse
Affiliation(s)
- Weiju Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Debing Du
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Tongze Fu
- Harbin Medical University, Harbin, China
| | - Ying Han
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Li
- National Center for Biomedical Analysis, Beijing, China
| | - Hong Ju
- Heilongjiang Vocational College of Biology Science and Technology, Harbin, China
| |
Collapse
|