1
|
Salbreiter M, Wagenhaus A, Rösch P, Popp J. Raman spectroscopy as a comprehensive tool for profiling endospore-forming bacteria. Analyst 2025; 150:1652-1661. [PMID: 40100737 DOI: 10.1039/d5an00115c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Accurate and reliable bacterial identification at the genus and species levels is essential for effective clinical diagnostics. Pathogens such as Clostridium perfringens, Bacillus cereus, Clostridioides difficile, and Paraclostridium sordellii pose significant challenges due to their unique cultivation requirements and developmental traits. Building on our previous work demonstrating the differentiation of vegetative Clostridium cells from non-Clostridium genera, we now aim to extend this approach to distinguish endospores of the same species. Raman spectroscopy was utilized to develop a comprehensive library of endospore spectra, encompassing both pathogenic and non-pathogenic species. This extensive dataset forms the foundation for advanced analytical capabilities. Chemometric analysis of single-endospore Raman spectra revealed significant discriminatory power across multiple hierarchical levels, facilitating the distinction between vegetative cells and endospores. Furthermore, this method enabled precise genus- and species-level classification of endospores, underscoring its potential for high-resolution bacterial endospore identification. These results highlight the versatility and efficacy of Raman spectroscopy in addressing the challenges associated with the identification of bacterial endospores in diverse clinical and environmental contexts. These findings present the first comprehensive library of endospore Raman spectra, demonstrating that Raman spectroscopy combined with chemometric analysis is a robust and reliable method for differentiating endospores of Clostridium species from those of Bacillus, Clostridioides, and Paraclostridium. This approach holds significant promise as a precise diagnostic tool for bacterial endospore identification in clinical settings.
Collapse
Affiliation(s)
- Markus Salbreiter
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, Jena, Germany.
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Annette Wagenhaus
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, Jena, Germany.
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, Jena, Germany.
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, Jena, Germany.
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
2
|
Kim S, Jin YH, Mah JH. Inhibitory effects of garlic, cinnamon, and rosemary on viability, heat resistance, and biofilm formation of Bacillus cereus spores in the broth of a fermented soybean paste stew, Cheonggukjang jjigae. Food Res Int 2025; 206:116078. [PMID: 40058924 DOI: 10.1016/j.foodres.2025.116078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/22/2025] [Accepted: 02/22/2025] [Indexed: 05/13/2025]
Abstract
Foods prepared through heating, including broths, have the potential and risk of survival of Bacillus cereus, which has the ability to form spores and biofilms. This study evaluated the efficacy of various natural products (particularly spices) in mitigating B. cereus contamination in Cheonggukjang jjigae (CJ) broth. The following characteristics of B. cereus were examined: viability of vegetative cells (including other pathogenic bacteria) and planktonic spores, heat resistance of planktonic spores and spores in intact biofilms, and biofilm formation and persistence. In an antimicrobial test to evaluate the inhibitory effects of spice and cruciferous vegetable extracts on B. cereus CH3 vegetative cells, cinnamon, garlic, and rosemary extracts were selected as they have shown significant inhibitory effects, with inhibition zones of 20-29 mm in diameter at the highest concentration tested (160 mg/mL, unless otherwise stated). These spice extracts also exhibited antimicrobial activity against other foodborne pathogens, including Staphylococcus aureus, Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7. Garlic extract showed the greatest inhibitory effect on the viability and heat resistance of planktonic spores of B. cereus CH3, and cinnamon and rosemary extracts exhibited similar effects. Garlic extract reduced B. cereus CH3 spore counts in phosphate buffer solution (PBS) and CJ broth by 20.22 % and 14.08 %, respectively, compared to control (treated with the same ethanol amount instead of the extract), and effectively weakened spore heat resistance, reducing the D100°C-values of planktonic spores of B. cereus CH3 in PBS and CJ broth by 32.89 % and 23.08 %, respectively, compared to control. As for the characteristics related to biofilm, garlic extract showed the highest inhibitory effect on biofilm formation and persistence and heat resistance of spores in intact biofilms, followed by rosemary and cinnamon extracts. All three spice extracts completely inhibited biofilm formation even at the lowest concentration (20 mg/mL) at the early stage of biofilm formation. They completely eradicated biofilm persistence formed in brain heart infusion (BHI) and CJ broth at the highest concentration. A high garlic extract concentration (80 mg/mL) also reduced the D100°C-values of spores in biofilms formed in BHI and CJ broth by 16.34 % and 9.00 %, respectively, compared to control. Taken together, garlic extract was most effective in mitigating B. cereus contamination in a concentration-dependent manner in in vitro-menstrua and CJ broth. This study may provide one of the promising strategies to reduce the risk of B. cereus in soybean stews such as CJ.
Collapse
Affiliation(s)
- Sohyeon Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Young Hun Jin
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Jae-Hyung Mah
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea.
| |
Collapse
|
3
|
Kim S, Mah JH. Variation in heat resistance and biofilm formation of Bacillus cereus spores in various fermented soybean foods. Int J Food Microbiol 2025; 427:110939. [PMID: 39437681 DOI: 10.1016/j.ijfoodmicro.2024.110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
This study investigated the heat resistance of Bacillus cereus spores (as well as spores in intact biofilm) in two types of Korean fermented soybean foods and presumed the potential key parameters (physicochemical and nutritional properties) associated with their heat resistance. For example, the D100°C-values of B. cereus ATCC 10987 and CH3 spores with strong heat resistance and prolific biofilm-forming capability were compared in various Jjigae-type (Cheonggukjang jjigae, Doenjang jjigae, and Gochujang jjigae) and Jang-type (Cheonggukjang, Doenjang, and Gochujang) foods commonly consumed in Korea. The D100°C-values of planktonic spores were significantly different depending on the type of food, that is, Jang and Jjigae. Compared with Jjigae-type foods, a higher heat resistance of B. cereus spores was found in Jang-type foods (particularly Doenjang and Gochujang) with low water activity and high salinity. In Jjigae-type foods, spore heat resistance showed a positive correlation with the pH of Jjigaes, indicating that an acidic environment weakens the spores. A negative correlation between the total fat content and spore heat resistance was found in Jjigae-type foods but not in Jang-type foods. Meanwhile, regarding the heat resistance of B. cereus spores in intact biofilm, the D100°C-values were significantly higher (up to 6.5-fold) than those of planktonic spores in all Jjigae-type foods. The slightly acidic pH and amount of carbohydrates are likely related to the large formation of extracellular polymeric substances and strong heat resistance of B. cereus spores in biofilm. This study may provide a comprehensive understanding of the relationship between the key parameters of foods and heat resistance of B. cereus spores with or without intact biofilm and methods to control their risks in different types of fermented soybean foods.
Collapse
Affiliation(s)
- Sohyeon Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Jae-Hyung Mah
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea.
| |
Collapse
|
4
|
Liu TY, Hsu WH, Lee BH. Evaluation of the application of wild yeasts in inhibiting germination of ochratoxin-producing Fungi during coffee fermentation process. Food Chem X 2025; 25:102077. [PMID: 39758057 PMCID: PMC11700257 DOI: 10.1016/j.fochx.2024.102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 01/07/2025] Open
Abstract
Specialty coffee, typically lightly roasted, is valued for its unique fruity aroma. However, the fermentation process poses a risk of contamination with ochratoxin-producing fungi. This study aimed to select wild yeast strains capable of contributing distinctive flavor profiles while inhibiting the growth of ochratoxin-producing fungi. Coffee pulp served as a substrate to simulate yeast growth during coffee fermentation, allowing for the evaluation of yeast metabolites potential to inhibit spore germination in ochratoxin-producing fungi (Aspergillus niger). The findings demonstrated that the Saccharomyces cerevisiae strain effectively inhibited spore germination in A. niger. High-performance liquid chromatography (HPLC) analysis indicated that citric acid is likely the primary organic acid responsible for inhibiting A. niger spore germination. These results suggested that S. cerevisiae has potential applications in enhancing the food safety of coffee.
Collapse
Affiliation(s)
- Tsung-Yu Liu
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Wei-Hsuan Hsu
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Bao-Hong Lee
- Department of Horticultural Science, National Chiayi University, Chiayi 60004, Taiwan
| |
Collapse
|
5
|
Heckler C, Vale MG, Canales HDS, Stradiotto GC, Giordano ALPL, Schreiber AZ, Sant'Ana AS. Spore-forming bacteria in gelatin: Characterization, identification by 16S rRNA and MALDI-TOF mass spectrometry (MS), and presence of heat resistance and virulence genes. Int J Food Microbiol 2024; 422:110813. [PMID: 38970997 DOI: 10.1016/j.ijfoodmicro.2024.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
Gelatin, a versatile protein derived from collagen, is widely used in the food, pharmaceutical and medical sectors. However, bacterial contamination by spore-forming bacteria during gelatin processing represents a significant concern for product safety and quality. In this study, an investigation was carried out to explore the heat and chemical resistance, as well as the identification and characterization of spore-forming bacteria isolated from gelatin processing. The methodologies involved chemical resistance tests with drastic pH in microplates and thermal resistance tests in capillary tubes of various isolates obtained at different processing stages. In addition, phenotypic and genotypic analyses were carried out to characterize the most resistant isolates of spore-forming bacteria. The findings of this study revealed the presence of several species, including Bacillus cereus, Bacillus licheniformis, Bacillus sonorensis, Bacillus subtilis, Geobacillus stearothermophilus, and Clostridium sporogenes, with some isolates exhibiting remarkable chemical and heat resistances. In addition, a significant proportion of the most resistant isolates showed gelatinase activity (n = 19/21; 90.5 %) and the presence of heat resistance (n = 5/21; 23.8 %), and virulence genes (n = 11/21; 52.4 %). The results of this study suggest that interventions should be done in quality control practices and that process parameter adjustments and effective contamination reduction strategies should be implemented through gelatin processing.
Collapse
Affiliation(s)
- Caroline Heckler
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Matheus G Vale
- Department of Integrated Systems, Faculty of Mechanical Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Héctor D S Canales
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Graziele C Stradiotto
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Ana Luisa P L Giordano
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Angelica Z Schreiber
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
6
|
Pawluk AM, Kim D, Jin YH, Jeong KC, Mah JH. Biofilm-associated heat resistance of Bacillus cereus spores in vitro and in a food model, Cheonggukjang jjigae. Int J Food Microbiol 2021; 363:109505. [PMID: 34973549 DOI: 10.1016/j.ijfoodmicro.2021.109505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/19/2021] [Accepted: 12/12/2021] [Indexed: 11/15/2022]
Abstract
Bacillus cereus, a foodborne pathogen, is capable of forming spores and biofilms as methods to withstand environmental stresses. These bacterial structures are an issue for food safety as they aid the bacteria survive heat sterilisation processes of foods and food contact surfaces. This study was conducted to investigate the role of the biofilm structure in providing an extra layer of protection to spores against heat treatments. For this, heat resistance of B. cereus spores in intact biofilms was compared to that of planktonic spores in vitro and in a Cheonggukjang jjigae food model. Using methods developed in this study to measure the wet and dry heat resistance of spores in intact biofilms, it was found that B. cereus spores have significantly higher heat resistances when present in biofilms rather than as planktonic spores, and that dry heat is less effective than wet heat at killing spores in biofilms. In further detail, for wet heat treatments, spores in biofilms of the strain isolated from Cheonggukjang (Korean fermented whole soybean), B. cereus CH3, had generally higher wet heat resistances than the reference strain, B. cereus ATCC 10987, both in vitro and in the Cheonggukjang jjigae food model. However, the spores in biofilms of the two strains showed similar heat resistance to dry heat, with some exceptions, when biofilms were formed in vitro or in Cheonggukjang jjigae broth. Meanwhile, B. cereus ATCC 10987 spores in biofilms had higher or similar wet heat resistances in vitro compared to in Cheonggukjang jjigae broth. Wet heat resistances of B. cereus CH3 spores in biofilms were all statistically similar regardless of biofilm formation media (brain heart infusion and Cheonggukjang jjigae broths). For dry heat, spores in biofilms of both B. cereus strains were more heat resistant when biofilms were formed in the Cheonggukjang jjigae food model rather than in vitro. Altogether, heat resistances of spores in biofilms formed in vitro and in the food environment were found to be different depending on the tested B. cereus strain, but higher than planktonic spores in any case. This is the first study examining the heat resistance of B. cereus spores in intact biofilms matrices attached to the surface, both in vitro and in a food model. Therefore, this research is valuable to understand the protective effects of biofilms formed in food environments and to reduce the food safety risks associated with B. cereus.
Collapse
Affiliation(s)
| | - Dabin Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Young Hun Jin
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - KwangCheol Casey Jeong
- Department of Animal Sciences, University of Florida, Florida, FL 32611, USA; Emerging Pathogens Institute, University of Florida, Florida, FL 32611, USA
| | - Jae-Hyung Mah
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea.
| |
Collapse
|