1
|
Sun B, Pashkova L, Pieters P, Harke A, Mohite O, Santos A, Zielinski D, Palsson B, Phaneuf P. PanKB: An interactive microbial pangenome knowledgebase for research, biotechnological innovation, and knowledge mining. Nucleic Acids Res 2025; 53:D806-D818. [PMID: 39574409 PMCID: PMC11701538 DOI: 10.1093/nar/gkae1042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 01/18/2025] Open
Abstract
The exponential growth of microbial genome data presents unprecedented opportunities for unlocking the potential of microorganisms. The burgeoning field of pangenomics offers a framework for extracting insights from this big biological data. Recent advances in microbial pangenomic research have generated substantial data and literature, yielding valuable knowledge across diverse microbial species. PanKB (pankb.org), a knowledgebase designed for microbial pangenomics research and biotechnological applications, was built to capitalize on this wealth of information. PanKB currently includes 51 pangenomes from 8 industrially relevant microbial families, comprising 8402 genomes, over 500 000 genes and over 7M mutations. To describe this data, PanKB implements four main components: (1) Interactive pangenomic analytics to facilitate exploration, intuition, and potential discoveries; (2) Alleleomic analytics, a pangenomic-scale analysis of variants, providing insights into intra-species sequence variation and potential mutations for applications; (3) A global search function enabling broad and deep investigations across pangenomes to power research and bioengineering workflows; (4) A bibliome of 833 open-access pangenomic papers and an interface with an LLM that can answer in-depth questions using its knowledge. PanKB empowers researchers and bioengineers to harness the potential of microbial pangenomics and serves as a valuable resource bridging the gap between pangenomic data and practical applications.
Collapse
Affiliation(s)
- Binhuan Sun
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220 Søltofts Plads, 2800 Kongens, Lyngby, Denmark
| | - Liubov Pashkova
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220 Søltofts Plads, 2800 Kongens, Lyngby, Denmark
| | - Pascal Aldo Pieters
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220 Søltofts Plads, 2800 Kongens, Lyngby, Denmark
| | - Archana Sanjay Harke
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220 Søltofts Plads, 2800 Kongens, Lyngby, Denmark
| | - Omkar Satyavan Mohite
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220 Søltofts Plads, 2800 Kongens, Lyngby, Denmark
| | - Alberto Santos
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220 Søltofts Plads, 2800 Kongens, Lyngby, Denmark
| | - Daniel C Zielinski
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Bernhard O Palsson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220 Søltofts Plads, 2800 Kongens, Lyngby, Denmark
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Pediatrics, University of California, San Diego, La Jolla, California 92093, United States
| | - Patrick Victor Phaneuf
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220 Søltofts Plads, 2800 Kongens, Lyngby, Denmark
| |
Collapse
|
2
|
Yeast Carotenoids: Cost-Effective Fermentation Strategies for Health Care Applications. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carotenoid production from oleaginous red yeast has been considered as a safe alternative to chemically synthesized carotenoids commonly used in the food industry, since plant-based carotenoids are expensive and an irregular source for obtaining pigments. This is a summative review on the factors affecting carotenoid production, cost-effective production strategies using various inexpensive feedstock, metabolic engineering, and strain improvisation. The review specially highlights the various potential applications of carotenoids as anti-microbial, anti-viral, antioxidant, anti-cancerous, anti-malarial agents, etc. The importance of such natural and easily available resources for prevention, evasion, or cure of emerging diseases and their plausible nutraceutical effect demands exhaustive research in this area.
Collapse
|
3
|
Chandel H, Kumar P, Chandel AK, Verma ML. Biotechnological advances in biomass pretreatment for bio-renewable production through nanotechnological intervention. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-23. [PMID: 35529175 PMCID: PMC9064403 DOI: 10.1007/s13399-022-02746-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/10/2022] [Accepted: 04/25/2022] [Indexed: 05/05/2023]
Abstract
Globally, the fossil fuel reserves are depleting rapidly and the escalating fuel prices as well as plethora of the pollutants released from the emission of burning fossil fuels cause global warming that massively disturb the ecological balance. Moreover, the unnecessary utilization of non-renewable energy sources is a genuine hazard to nature and economic stability, which demands an alternative renewable source of energy. The lignocellulosic biomass is the pillar of renewable sources of energy. Different conventional pretreatment methods of lignocellulosic feedstocks have employed for biofuel production. However, these pretreatments are associated with disadvantages such as high cost of chemical substances, high load of organic catalysts or mechanical equipment, time consuming, and production of toxic inhibitors causing the environmental pollution. Nanotechnology has shown the promised biorefinery results by overcoming the disadvantages associated with the conventional pretreatments. Recyclability of nanomaterials offers cost effective and economically viable biorefineries processes. Lignolytic and saccharolytic enzymes have immobilized onto/into the nanomaterials for the higher biocatalyst loading due to their inherent properties of high surface area to volume ratios. Nanobiocatalyst enhance the hydrolyzing process of pretreated biomass by their high penetration into the cell wall to disintegrate the complex carbohydrates for the release of high amounts of sugars towards biofuel and various by-products production. Different nanotechnological routes provide cost-effective bioenergy production from the rich repertoires of the forest and agricultural-based lignocellulosic biomass. In this article, a critical survey of diverse biomass pretreatment methods and the nanotechnological interventions for opening up the biomass structure has been carried out.
Collapse
Affiliation(s)
- Heena Chandel
- Department of Biotechnology, School of Basic Sciences, Indian Institute of Information Technology Una, Himachal Pradesh, 177209 India
| | - Prateek Kumar
- Department of Biotechnology, School of Basic Sciences, Indian Institute of Information Technology Una, Himachal Pradesh, 177209 India
| | - Anuj K. Chandel
- Department of Biotechnology, Engineering School of Lorena, University of São, Paulo-12.602.810, Brazil
| | - Madan L. Verma
- Department of Biotechnology, School of Basic Sciences, Indian Institute of Information Technology Una, Himachal Pradesh, 177209 India
| |
Collapse
|