1
|
Kidangathazhe A, Amponsah T, Maji A, Adams S, Chettoor M, Wang X, Scaria J. Synthetic vs. non-synthetic sweeteners: their differential effects on gut microbiome diversity and function. Front Microbiol 2025; 16:1531131. [PMID: 40443994 PMCID: PMC12119465 DOI: 10.3389/fmicb.2025.1531131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/02/2025] [Indexed: 06/02/2025] Open
Abstract
The rising use of artificial sweeteners, favored for their zero-calorie content and superior sweetness, necessitates understanding their impact on the gut microbiome. This study examines the effects of five common artificial sweeteners-Acesulfame K, Rebaudioside A, Saccharin, Sucralose, and Xylitol-on gut microbiome diversity using minibioreactor arrays. Fecal samples from three healthy individuals were used to inoculate bioreactors that were subsequently supplemented with each sweetener. Over 35 days, microbial diversity and network composition were analyzed. Results revealed synthetic sweeteners like Sucralose and Saccharin significantly reduced microbial diversity, while non-synthetic sweeteners, particularly Rebaudioside A and Xylitol, were less disruptive. Acesulfame K increased diversity but disrupted network structure, suggesting potential long-term negative impacts on microbiome resilience. Sucralose enriched pathogenic families such as Enterobacteriaceae, whereas natural sweeteners promoted beneficial taxa like Lachnospiraceae. Random Matrix Theory (RMT) based analysis highlighted distinct microbial interaction patterns, with Acesulfame K causing persistent structural changes. Findings suggest non-synthetic sweeteners may be more favorable for gut health than synthetic ones, emphasizing cautious use, particularly for those with gut health concerns. This study enhances our understanding of artificial sweeteners' effects on the gut microbiome, highlighting the need for further research into their long-term health implications.
Collapse
Affiliation(s)
- Alex Kidangathazhe
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Theresah Amponsah
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - Abhijit Maji
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Seidu Adams
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Maria Chettoor
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Xiuqing Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
2
|
Chandel P, Thapa K, Kanojia N, Rani L, Singh TG, Rohilla P. Exploring Therapeutic Potential of Phytoconstituents as a Gut Microbiota Modulator in the Management of Neurological and Psychological Disorders. Neuroscience 2024; 551:69-78. [PMID: 38754721 DOI: 10.1016/j.neuroscience.2024.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
The functioning of the brain and its impact on behavior, emotions, and cognition can be affected by both neurological and psychiatric disorders that impose a significant burden on global health. Phytochemicals are helpful in the treatment of several neurological and psychological disorders, including anxiety, depression, Huntington's disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD), and autism spectrum disorder (ASD), because they have symptomatic benefits with few adverse reactions. Changes in gut microbiota have been associated with many neurological and psychiatric conditions. This review focuses on the potential efficacy of phytochemicals such as flavonoids, terpenoids, and polyphenols in regulating gut flora and providing symptomatic relief for a range of neurological and psychological conditions. Evidence-based research has shown the medicinal potentials of these phytochemicals, but additional study is required to determine whether altering gut microbiota might slow the advancement of neurological and psychological problems.
Collapse
Affiliation(s)
- Prarit Chandel
- Chitkara University, School of Pharmacy, Himachal Pradesh, India
| | - Komal Thapa
- Chitkara University, School of Pharmacy, Himachal Pradesh, India.
| | - Neha Kanojia
- Chitkara University, School of Pharmacy, Himachal Pradesh, India
| | - Lata Rani
- Chitkara University, School of Pharmacy, Himachal Pradesh, India
| | | | | |
Collapse
|
3
|
Deng M, Ye J, Zhang R, Zhang S, Dong L, Huang F, Jia X, Su D, Ma Q, Zhao D, Zhang M. Shatianyu dietary fiber (Citrus grandis L. Osbeck) promotes the production of active metabolites from its flavonoids during in vitro colonic fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3139-3146. [PMID: 38072776 DOI: 10.1002/jsfa.13204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND Recent studies reveal that dietary fiber (DF) might play a critical role in the metabolism and bioactivity of flavonoids by regulating gut microbiota. We previously found that Shatianyu (Citrus grandis L. Osbeck) pulp was rich in flavonoids and DF, and Shatianyu pulp flavonoid extracts (SPFEs) were dominated by melitidin, obviously different from other citrus flavonoids dominated by naringin. The effects of Shatianyu pulp DF (SPDF) on the microbial metabolism and bioactivity of SPFEs is unknown. RESULTS An in vitro colonic fermentation model was used to explore the effects of SPDF on the microbial metabolism and antioxidant activity of SPFEs in the present study. At the beginning of fermentation, SPDF promoted the microbial degradation of SPFEs. After 24 h-fermentation, the supplemented SPFEs were almost all degraded in SPFEs group, and the main metabolites detected were the dehydrogenation, hydroxylation and acetylation products of naringenin, the aglycone of the major SPFEs components. However, when SPFEs fermented with SPDF for 24 h, 60.7% of flavonoid compounds were retained, and SPFEs were mainly transformed to the ring fission metabolites, such as 3-(4-hydroxyphenyl) propionic acid, 3-phenylpropionic acid and 3-(3-hydroxy-phenyl) propionic acid. The fermentation metabolites of SPFEs showed stronger antioxidant activity than the original ones, with a further increase in SPDF supplemented group. Furthermore, SPFEs enriched microbiota participating in the deglycosylation and dehydrogenation of flavonoids, while co-supplementation of SPDF and SPFEs witnessed the bloom of Lactobacillaceae and Lactobacillus, contributing to the deglycosylation and ring fission of flavonoids. CONCLUSION SDPF promote SPFEs to transform to active metabolites probably by regulating gut microbiota. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mei Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Jiamin Ye
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Shuai Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Xuchao Jia
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Qin Ma
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Dong Zhao
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
- Food Laboratory of Zhongyuan, Luohe, China
| |
Collapse
|
4
|
Zhang M, Li RW, Yang H, Tan Z, Liu F. Recent advances in developing butyrogenic functional foods to promote gut health. Crit Rev Food Sci Nutr 2022; 64:4410-4431. [PMID: 36330804 DOI: 10.1080/10408398.2022.2142194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As one of the major short-chain fatty acids produced via microbial fermentation, butyrate serves as not only a preferred energy substrate but also an important signaling molecule. Butyrate concentrations in circulation, tissues, and gut luminal contents have important pathophysiological implications. The genetic capacity of butyrate biosynthesis by the gut microbiota is frequently compromised during aging and various disorders, such as inflammatory bowel disease, metabolic disorders and colorectal cancer. Substantial efforts have been made to identify potent butyrogenic substrates and butyrate-hyperproducing bacteria to compensate for butyrate deficiency. Interindividual butyrogenic responses exist, which are more strongly predicted by heterogeneity in the gut microbiota composition than by ingested prebiotic substrates. In this review, we catalog major food types rich in butyrogenic substrates. We also discuss the potential of butyrogenic foods with proven properties for promoting gut health and disease management using findings from clinical trials. Potential limitations and constraints in the current research are highlighted. We advocate a precise nutrition approach in designing future clinical trials by prescreening individuals for key gut microbial signatures when recruiting study volunteers. The information provided in this review will be conducive to the development of microbiota engineering approaches for enhancing the sustained production of butyrate.
Collapse
Affiliation(s)
- Miao Zhang
- College of Agriculture, Henan Provincial Key Laboratory of Ion Beam Bioengineering, Zhengzhou University, Zhengzhou, China
| | - Robert W Li
- Animal Parasitic Diseases Laboratory, USDA-ARS, Beltsville, Maryland, USA
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhongfang Tan
- College of Agriculture, Henan Provincial Key Laboratory of Ion Beam Bioengineering, Zhengzhou University, Zhengzhou, China
| | - Fang Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|