1
|
Yaikhan T, Singkhamanan K, Luenglusontigit P, Chukamnerd A, Nokchan N, Chintakovid N, Chusri S, Pomwised R, Wonglapsuwan M, Leetanaporn K, Sangkhathat S, Surachat K. Genomic analysis of Enterobacter cloacae complex from Southern Thailand reveals insights into multidrug resistance genotypes and genetic diversity. Sci Rep 2025; 15:4670. [PMID: 39920182 PMCID: PMC11806111 DOI: 10.1038/s41598-024-81595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/27/2024] [Indexed: 02/09/2025] Open
Abstract
In this study, we conducted a comprehensive investigation into the Enterobacter cloacae complex (ECC), a group of notorious pathogens responsible for various hospital-acquired infections. We aimed to gain critical insights into antimicrobial resistance profiles and genomic diversity among 17 ECC isolates, which were previously collected as part of a short-term surveillance effort for 6 months in 2019. We identified two novel sequence types (ST-1936 in E. bugandensis PSU30 and ST-1937 in E. roggenkampii PSU45) among the 14 distinct STs identified in our ECC isolates. Furthermore, our expanded investigation revealed 296 novel STs within the NCBI Reference Sequence database. We identified six isolates carrying the mcr-9 gene, highlighting a significant concern in antimicrobial resistance (AMR). These genes confer a reduced susceptibility to colistin, a critical last-resort drug for the treatment of multidrug-resistant (MDR) infection. In addition to the AMR complexity, we found that three isolates carried the blaNDM gene on IncN2 plasmids, further emphasizing the urgency of monitoring and managing ECC-related infections. Our study provided evidence of intra-hospital transmission involving E. asburiae isolates PSU37, PSU39, and PSU40, all collected from the nasopharynx of three individuals in the intensive care unit (ICU) of the same hospital. These findings highlight the need for stringent infection control measures to prevent similar outbreaks and emphasize the importance of effective surveillance and management strategies to address ECC-related challenges.
Collapse
Affiliation(s)
- Thunchanok Yaikhan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Pawarisa Luenglusontigit
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Arnon Chukamnerd
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Natakorn Nokchan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Nutwadee Chintakovid
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand
| | - Kittinun Leetanaporn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Surasak Sangkhathat
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand.
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
2
|
El-Bestawy E, Metwally MAA, Aly ARA. Integrated biological-chemical system for phenol removal from petrochemicals wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1541-1564. [PMID: 39739168 DOI: 10.1007/s11356-024-35645-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/21/2024] [Indexed: 01/02/2025]
Abstract
Phenol is a highly concerning pollutant in petrochemical industrial wastewater. It is extremely poisonous, carcinogenic, and persistent, therefore, it bioaccumulates in the food chain reaching humans, where it causes acute irritation to the skin, eyes, and respiratory tract, as well as chronic effects on the liver, kidneys, and nervous system. It spills or leaks easily into surface water or groundwater sources, leading to the creation of other harmful substituted compounds. Therefore, the present study aimed to design an integrated biological-chemical system (phenol degrader(s) and nanoparticle assemblage) for the efficient removal of phenolic compounds from wastewater of a poly-vinyl chloride production unit at a petrochemical company in Alexandria. Ten indigenous microbial isolates were obtained from phenol-contaminated wastewater and purified. Two fungal isolates were excluded, and eight bacterial isolates were screened for their efficiency in the degradation and removal of phenol. Three isolates (Stutzerimonas chloritidismutans strain AW-1 (A2), Stutzerimonas stutzeri ATCC 17588 = LMG 11199 (A4), and Arthrobacter ruber strain MDB1-42 (A9)) proved to be the most promising candidate(s) and were investigated as individual and mixed cultures. The mixed culture (A2, A4, and A9) proved to be the most efficient, and could achieve 98.85, 31.08, 45.83, and 45.83% removal of phenol, chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total dissolved solids (TDS), respectively (all below their maximum permissible limits (MPLs)), for discharge or reuse. The bacterial consortium was decorated with the synthesized and characterized Fe3O4 Nanoparticles (NPs) at 1:3 (g/g), the optimum ratio for coating and immobilization (94.22%) of the bacterial consortium. Fe3O4 NP/bacteria assembly (trial 1) showed the highest RE of 20, 56.66, 47.06, 25.16, and 96.78% for TDS, total suspended solids (TSS), BOD, COD, and phenol, respectively, all after only 1 h except TSS (2 h), compared to the treatment with undecorated bacterial consortium (trial 2) or bacteria-free Fe3O4 NPs (trial 3). It is concluded that the proposed treatment system (Fe3O4 NP/bacterial assembly) is an extraordinarily effective, practical, quick, clean, renewable, long-lasting, ecologically friendly, and simply implemented technology for remediating phenol-contaminated wastewater compared to other conventional treatment methods. Concerning TSS, COD, and phenol residues that are still higher than their MPLs, it can be easily overcome by increasing the exposure (contact) time or the dose of the Fe3O4 NP/bacterial assembly, using multiple units of the proposed treatment in sequence, or fixing the decorated bacteria as a biofilm system and treating the effluent in a continuous mode.
Collapse
Affiliation(s)
- Ebtesam El-Bestawy
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt.
| | | | - Abdel Rahman Ahmed Aly
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt
| |
Collapse
|
3
|
Venter SN, Rodriguez-R LM, Chuvochina M, Palmer M, Hugenholtz P, Steenkamp ET. Options and considerations for validation of prokaryotic names under the SeqCode. Syst Appl Microbiol 2024; 47:126554. [PMID: 39305564 DOI: 10.1016/j.syapm.2024.126554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 11/26/2024]
Abstract
Stable taxon names for Bacteria and Archaea are essential for capturing and documenting prokaryotic diversity. They are also crucial for scientific communication, effective accumulation of biological data related to the taxon names and for developing a comprehensive understanding of prokaryotic evolution. However, after more than a hundred years, taxonomists have succeeded in valid publication of only around 30 000 species names, based mostly on pure cultures under the International Code of Nomenclature of Prokaryotes (ICNP), out of the millions estimated to reside in the biosphere. The vast majority of prokaryotic species have not been cultured and are becoming increasingly known to us via culture-independent sequence-based approaches. Until recently, such taxa could only be addressed nomenclaturally via provisional names such as Candidatus or alphanumeric identifiers. Here, we present options and considerations to facilitate validation of names for these taxa using the recently established Code of Nomenclature of Prokaryotes Described from Sequence Data (SeqCode). Community engagement and participation of relevant taxon specialists are critical and encouraged for the success of endeavours to formally name the uncultured majority.
Collapse
Affiliation(s)
- Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Luis M Rodriguez-R
- Department of Microbiology and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Maria Chuvochina
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Australia
| | - Marike Palmer
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Australia
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Chan DTC, Bernstein HC. Pangenomic landscapes shape performances of a synthetic genetic circuit across Stutzerimonas species. mSystems 2024; 9:e0084924. [PMID: 39166875 PMCID: PMC11406997 DOI: 10.1128/msystems.00849-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Engineering identical genetic circuits into different species typically results in large differences in performance due to the unique cellular environmental context of each host, a phenomenon known as the "chassis-effect" or "context-dependency". A better understanding of how genomic and physiological contexts underpin the chassis-effect will improve biodesign strategies across diverse microorganisms. Here, we combined a pangenomic-based gene expression analysis with quantitative measurements of performance from an engineered genetic inverter device to uncover how genome structure and function relate to the observed chassis-effect across six closely related Stutzerimonas hosts. Our results reveal that genome architecture underpins divergent responses between our chosen non-model bacterial hosts to the engineered device. Specifically, differential expression of the core genome, gene clusters shared between all hosts, was found to be the main source of significant concordance to the observed differential genetic device performance, whereas specialty genes from respective accessory genomes were not significant. A data-driven investigation revealed that genes involved in denitrification and components of trans-membrane transporter proteins were among the most differentially expressed gene clusters between hosts in response to the genetic device. Our results show that the chassis-effect can be traced along differences among the most conserved genome-encoded functions and that these differences create a unique biodesign space among closely related species.IMPORTANCEContemporary synthetic biology endeavors often default to a handful of model organisms to host their engineered systems. Model organisms such as Escherichia coli serve as attractive hosts due to their tractability but do not necessarily provide the ideal environment to optimize performance. As more novel microbes are domesticated for use as biotechnology platforms, synthetic biologists are urged to explore the chassis-design space to optimize their systems and deliver on the promises of synthetic biology. The consequences of the chassis-effect will therefore only become more relevant as the field of biodesign grows. In our work, we demonstrate that the performance of a genetic device is highly dependent on the host environment it operates within, promoting the notion that the chassis can be considered a design variable to tune circuit function. Importantly, our results unveil that the chassis-effect can be traced along similarities in genome architecture, specifically the shared core genome. Our study advocates for the exploration of the chassis-design space and is a step forward to empowering synthetic biologists with knowledge for more efficient exploration of the chassis-design space to enable the next generation of broad-host-range synthetic biology.
Collapse
Affiliation(s)
- Dennis Tin Chat Chan
- Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Hans C Bernstein
- Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
- The Arctic Centre for Sustainable Energy, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
5
|
Táncsics A, Bedics A, Banerjee S, Soares A, Baka E, Probst AJ, Kriszt B. Stable-isotope probing combined with amplicon sequencing and metagenomics identifies key bacterial benzene degraders under microaerobic conditions. Biol Futur 2024; 75:301-311. [PMID: 39044043 DOI: 10.1007/s42977-024-00232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
The primary aim of the present study was to reveal the major differences between benzene-degrading bacterial communities evolve under aerobic versus microaerobic conditions and to reveal the diversity of those bacteria, which can relatively quickly degrade benzene even under microaerobic conditions. For this, parallel aerobic and microaerobic microcosms were set up by using groundwater sediment of a BTEX-contaminated site and 13C labelled benzene. The evolved total bacterial communities were first investigated by 16S rRNA gene Illumina amplicon sequencing, followed by a density gradient fractionation of DNA and a separate investigation of "heavy" and "light" DNA fractions. Results shed light on the fact that the availability of oxygen strongly determined the structure of the degrading bacterial communities. While members of the genus Pseudomonas were overwhelmingly dominant under clear aerobic conditions, they were almost completely replaced by members of genera Malikia and Azovibrio in the microaerobic microcosms. Investigation of the density resolved DNA fractions further confirmed the key role of these two latter genera in the microaerobic degradation of benzene. Moreover, analysis of a previously acquired metagenome-assembled Azovibrio genome suggested that benzene was degraded through the meta-cleavage pathway by this bacterium, with the help of a subfamily I.2.I-type catechol 2,3-dioxygenase. Overall, results of the present study implicate that under limited oxygen availability, some potentially microaerophilic bacteria play crucial role in the aerobic degradation of aromatic hydrocarbons.
Collapse
Affiliation(s)
- András Táncsics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1., 2100, Gödöllö, Hungary.
| | - Anna Bedics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1., 2100, Gödöllö, Hungary
| | - Sinchan Banerjee
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - André Soares
- Department of Chemistry, Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Erzsébet Baka
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1., 2100, Gödöllö, Hungary
| | - Alexander J Probst
- Department of Chemistry, Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1., 2100, Gödöllö, Hungary
| |
Collapse
|
6
|
Horcajada JP, Edwards F, Fonio S, Montero M, Harris P, Paterson DL, Laupland KB. Pseudomonas stutzeri bloodstream infection is a prevailing community-onset disease with important mortality rates: results from a retrospective observational study in Australia. Infect Dis (Lond) 2024; 56:606-615. [PMID: 38535973 DOI: 10.1080/23744235.2024.2333979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND The recognition of Pseudomonas stutzeri as a cause of infections in humans has been increasing. However, only case reports and small series of P. stutzeri bloodstream infections have been published. Epidemiological data on these infections are extremely scarce. Our objective was to describe the incidence, epidemiology, antimicrobial resistance rates, and outcomes of P. stutzeri bloodstream infections in a large population-based cohort in Australia. METHODS Retrospective, laboratory-based surveillance study conducted in Queensland, Australia (population ≈ 5 million) during 2000-2019. Clinical information was obtained from public hospital admissions and vital statistics databases. RESULTS In total, 228 episodes of P. stutzeri bloodstream infections were identified. Increased incidence was observed in the later years, especially in older men, and was higher during the rainy months of the year and in the warmest and more humid regions of the state. The majority of bloodstream infections were community-onset with 120 (52.6%) community-associated and 59 (25.9%) ambulatory healthcare-associated episodes. Only 49 cases (21.5%) were nosocomial. The most common foci of infection were skin and soft tissue, lower respiratory tract, and intra-abdominal. No isolate showed antimicrobial resistance. Thirty-one patients (13.6%) died. The mortality rate in patients with a respiratory infectious source was higher (21%). CONCLUSIONS P. stutzeri bloodstream infection was predominantly a community-onset condition including ambulatory healthcare related cases, with increasing incidence, especially in older males. No antimicrobial resistance was observed. Mortality was high in patients with respiratory infectious source. This new observational data have implications when considering the epidemiology of these infections and for patient management.
Collapse
Affiliation(s)
- Juan P Horcajada
- Department of Infectious Diseases, Hospital del Mar, Hospital del Mar Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Felicity Edwards
- Faculty of Medicine, Queensland University of Technology (QUT), Brisbane, Australia
| | - Silvia Fonio
- Department of Infectious Diseases, Hospital del Mar, Hospital del Mar Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Milagro Montero
- Department of Infectious Diseases, Hospital del Mar, Hospital del Mar Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Patrick Harris
- Faculty of Medicine, UQ Center for Clinical Research, University of Queensland, Brisbane, Australia
- Department of Microbiology, Pathology Queensland, Brisbane, Australia
| | - David L Paterson
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Kevin B Laupland
- Faculty of Medicine, Queensland University of Technology (QUT), Brisbane, Australia
- Department of Intensive Care Services, Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
7
|
Zambrano-Romero A, Ramirez-Villacis DX, Barriga-Medina N, Sierra-Alvarez R, Trueba G, Ochoa-Herrera V, Leon-Reyes A. Comparative Methods for Quantification of Sulfate-Reducing Bacteria in Environmental and Engineered Sludge Samples. BIOLOGY 2023; 12:985. [PMID: 37508415 PMCID: PMC10375983 DOI: 10.3390/biology12070985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
This study aimed to compare microscopic counting, culture, and quantitative or real-time PCR (qPCR) to quantify sulfate-reducing bacteria in environmental and engineered sludge samples. Four sets of primers that amplified the dsrA and apsA gene encoding the two key enzymes of the sulfate-reduction pathway were initially tested. qPCR standard curves were constructed using genomic DNA from an SRB suspension and dilutions of an enriched sulfate-reducing sludge. According to specificity and reproducibility, the DSR1F/RH3-dsr-R primer set ensured a good quantification based on dsrA gene amplification; however, it exhibited inconsistencies at low and high levels of SRB concentrations in environmental and sulfate-reducing sludge samples. Ultimately, we conducted a qPCR method normalized to dsrA gene copies, using a synthetic double-stranded DNA fragment as a calibrator. This method fulfilled all validation criteria and proved to be specific, accurate, and precise. The enumeration of metabolically active SRB populations through culture methods differed from dsrA gene copies but showed a plausible positive correlation. Conversely, microscopic counting had limitations due to distinguishing densely clustered organisms, impacting precision. Hence, this study proves that a qPCR-based method optimized with dsrA gene copies as a calibrator is a sensitive molecular tool for the absolute enumeration of SRB populations in engineered and environmental sludge samples.
Collapse
Affiliation(s)
- Aracely Zambrano-Romero
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Diego de Robles y Vía Interoceánica, Quito 17-1200-841, Ecuador
| | - Dario X Ramirez-Villacis
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Diego de Robles y Vía Interoceánica, Quito 17-1200-841, Ecuador
- Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Diego de Robles s/n y Vía Interoceánica, Quito 17-1200-841, Ecuador
- Laboratorio de Biotecnología Agrícola y de Alimentos, Ingeniería en Agronomía, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Diego de Robles y Vía Interoceánica, Quito 17-1200-841, Ecuador
| | - Noelia Barriga-Medina
- Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Diego de Robles s/n y Vía Interoceánica, Quito 17-1200-841, Ecuador
- Laboratorio de Biotecnología Agrícola y de Alimentos, Ingeniería en Agronomía, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Diego de Robles y Vía Interoceánica, Quito 17-1200-841, Ecuador
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, The University of Arizona, P.O. Box 210011, Tucson, AZ 85721-0011, USA
| | - Gabriel Trueba
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Diego de Robles y Vía Interoceánica, Quito 17-1200-841, Ecuador
| | - Valeria Ochoa-Herrera
- Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Diego de Robles s/n y Vía Interoceánica, Quito 17-1200-841, Ecuador
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Antonio Leon-Reyes
- Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Diego de Robles s/n y Vía Interoceánica, Quito 17-1200-841, Ecuador
- Laboratorio de Biotecnología Agrícola y de Alimentos, Ingeniería en Agronomía, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Diego de Robles y Vía Interoceánica, Quito 17-1200-841, Ecuador
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
8
|
Salvà-Serra F, Pérez-Pantoja D, Donoso RA, Jaén-Luchoro D, Fernández-Juárez V, Engström-Jakobsson H, Moore ERB, Lalucat J, Bennasar-Figueras A. Comparative genomics of Stutzerimonas balearica ( Pseudomonas balearica): diversity, habitats, and biodegradation of aromatic compounds. Front Microbiol 2023; 14:1159176. [PMID: 37275147 PMCID: PMC10234333 DOI: 10.3389/fmicb.2023.1159176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/13/2023] [Indexed: 06/07/2023] Open
Abstract
Stutzerimonas balearica (Pseudomonas balearica) has been found principally in oil-polluted environments. The capability of S. balearica to thrive from the degradation of pollutant compounds makes it a species of interest for potential bioremediation applications. However, little has been reported about the diversity of S. balearica. In this study, genome sequences of S. balearica strains from different origins were analyzed, revealing that it is a diverse species with an open pan-genome that will continue revealing new genes and functionalities as the genomes of more strains are sequenced. The nucleotide signatures and intra- and inter-species variation of the 16S rRNA genes of S. balearica were reevaluated. A strategy of screening 16S rRNA gene sequences in public databases enabled the detection of 158 additional strains, of which only 23% were described as S. balearica. The species was detected from a wide range of environments, although mostly from aquatic and polluted environments, predominantly related to petroleum oil. Genomic and phenotypic analyses confirmed that S. balearica possesses varied inherent capabilities for aromatic compounds degradation. This study increases the knowledge of the biology and diversity of S. balearica and will serve as a basis for future work with the species.
Collapse
Affiliation(s)
- Francisco Salvà-Serra
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Danilo Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Raúl A. Donoso
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Víctor Fernández-Juárez
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Hedvig Engström-Jakobsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Edward R. B. Moore
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jorge Lalucat
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Antoni Bennasar-Figueras
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| |
Collapse
|
9
|
Guo J, Xu S, Liu Y, Zhang C, Hou S. Complete Genome Sequence of Stutzerimonas stutzeri Strain SOCE 002, a Marine Bacterium Isolated from the Surface Seawater of Dapeng Bay. Microbiol Resour Announc 2023; 12:e0015023. [PMID: 37067410 DOI: 10.1128/mra.00150-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
We report the complete genome sequence of Stutzerimonas stutzeri strain SOCE 002, obtained from Illumina and Oxford Nanopore sequencing. The genome is 4.68 Mb long, with a GC content of 63.5%, and contains 4,334 protein-coding genes, 60 tRNAs, and 12 rRNAs. We expect that this complete genome sequence will provide a reference for both genomic and metabolic analyses of S. stutzeri.
Collapse
Affiliation(s)
- Jing Guo
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
| | - Shuaishuai Xu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yanting Liu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chuanlun Zhang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
| | - Shengwei Hou
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
10
|
Gomila M, Mulet M, García-Valdés E, Lalucat J. Genome-Based Taxonomy of the Genus Stutzerimonas and Proposal of S. frequens sp. nov. and S. degradans sp. nov. and Emended Descriptions of S. perfectomarina and S. chloritidismutans. Microorganisms 2022; 10:1363. [PMID: 35889082 PMCID: PMC9320692 DOI: 10.3390/microorganisms10071363] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 01/27/2023] Open
Abstract
Stutzerimonas is a recently proposed genus within the Pseudomonadaceae comprising strains in the formerly phylogenetic group of Pseudomonas stutzeri. At least sixteen named species have to be included in the genus, together with 22 genomovars of Stutzerimonas stutzeri. To clarify the taxonomy of Stutzerimonas, a core-genome phylogeny of 200 strains in the genus was inferred and monophyletic strains with average nucleotide identities (ANIb) with values equal to or higher than 95 were grouped in the same phylogenomic species. A total of 45 phylogenomic species within the genus Stutzerimonas were detected in the present study. Sixteen phylogenomic species correspond to already named species, although three of them are not yet validated and two are proposed in the present study. A synonymy was detected between P. kunmingensis and S. chloritidismutans, both members of phylogenomic species 3, with a prevalence of the S. chloritidismutans name. The correspondence of the phylogenomic species to the genome taxonomy database classification (GTDB taxonomy) is discussed. Combining phylogenomic and phenotypic data, two novel species are described (Stutzerimonas frequens and Stutzerimonas degradans) and two species descriptions are emended (Stutzerimonas perfectomarina and Stutzerimonas chloritidismutans).
Collapse
Affiliation(s)
- Margarita Gomila
- Microbiology (Biology Department), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (M.G.); (M.M.); (E.G.-V.)
| | - Magdalena Mulet
- Microbiology (Biology Department), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (M.G.); (M.M.); (E.G.-V.)
| | - Elena García-Valdés
- Microbiology (Biology Department), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (M.G.); (M.M.); (E.G.-V.)
- Institut Mediterrani d’Estudis Avançats (IMEDEA CSIC-UIB), 07190 Mallorca, Spain
| | - Jorge Lalucat
- Microbiology (Biology Department), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (M.G.); (M.M.); (E.G.-V.)
- Institut Mediterrani d’Estudis Avançats (IMEDEA CSIC-UIB), 07190 Mallorca, Spain
| |
Collapse
|
11
|
Kuhl-Nagel T, Rodriguez PA, Gantner I, Chowdhury SP, Schwehn P, Rosenkranz M, Weber B, Schnitzler JP, Kublik S, Schloter M, Rothballer M, Falter-Braun P. Novel Pseudomonas sp. SCA7 Promotes Plant Growth in Two Plant Families and Induces Systemic Resistance in Arabidopsis thaliana. Front Microbiol 2022; 13:923515. [PMID: 35875540 PMCID: PMC9297469 DOI: 10.3389/fmicb.2022.923515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas sp. SCA7, characterized in this study, was isolated from roots of the bread wheat Triticum aestivum. Sequencing and annotation of the complete SCA7 genome revealed that it represents a potential new Pseudomonas sp. with a remarkable repertoire of plant beneficial functions. In vitro and in planta experiments with the reference dicot plant A. thaliana and the original monocot host T. aestivum were conducted to identify the functional properties of SCA7. The isolate was able to colonize roots, modify root architecture, and promote growth in A. thaliana. Moreover, the isolate increased plant fresh weight in T. aestivum under unchallenged conditions. Gene expression analysis of SCA7-inoculated A. thaliana indicated a role of SCA7 in nutrient uptake and priming of plants. Moreover, confrontational assays of SCA7 with fungal and bacterial plant pathogens revealed growth restriction of the pathogens by SCA7 in direct as well as indirect contact. The latter indicated involvement of microbial volatile organic compounds (mVOCs) in this interaction. Gas chromatography-mass spectrometry (GC-MS) analyses revealed 1-undecene as the major mVOC, and octanal and 1,4-undecadiene as minor abundant compounds in the emission pattern of SCA7. Additionally, SCA7 enhanced resistance of A. thaliana against infection with the plant pathogen Pseudomonas syringae pv. tomato DC3000. In line with these results, SA- and JA/ET-related gene expression in A. thaliana during infection with Pst DC3000 was upregulated upon treatment with SCA7, indicating the ability of SCA7 to induce systemic resistance. The thorough characterization of the novel Pseudomonas sp. SCA7 showed a remarkable genomic and functional potential of plant beneficial traits, rendering it a promising candidate for application as a biocontrol or a biostimulation agent.
Collapse
Affiliation(s)
- Theresa Kuhl-Nagel
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Patricia Antonia Rodriguez
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Isabella Gantner
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Soumitra Paul Chowdhury
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Patrick Schwehn
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Maaria Rosenkranz
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Baris Weber
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Rothballer
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Pascal Falter-Braun
- Institute for Network Biology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|