1
|
Vishwakarma A, Verma D. 16S rDNA-Based Amplicon Analysis Unveiled a Correlation Between the Bacterial Diversity and Antibiotic Resistance Genes of Bacteriome of Commercial Smokeless Tobacco Products. Appl Biochem Biotechnol 2024; 196:6759-6781. [PMID: 38407781 DOI: 10.1007/s12010-024-04857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 02/27/2024]
Abstract
The distribution of bacterial-derived antibiotic resistance genes (ARGs) in smokeless tobacco products is less explored and encourages understanding of the ARG profile of Indian smokeless tobacco products. Therefore, in the present investigation, ten commercial smokeless tobacco products were assessed for their bacterial diversity to understand the correlation between the inhabitant bacteria and predicted ARGs using a 16S rDNA-based metagenome analysis. Overall analysis showed the dominance of two phyla, i.e., Firmicutes (43.07%) and Proteobacteria (8.13%) among the samples, where Bacillus (9.76%), Terribacillus (8.06%), Lysinibacillus (5.8%), Alkalibacterium (5.6%), Oceanobacillus (3.52%), and Dickeya (3.1%) like genera were prevalent among these phyla. The phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt)-based analysis revealed 217 ARGs which were categorized into nine groups. Cationic antimicrobial polypeptides (CAMP, 33.8%), vancomycin (23.4%), penicillin-binding protein (13.8%), multidrug resistance MDR (10%), and β-lactam (9.3%) were among the top five contributors to ARGs. Staphylococcus, Dickeya, Bacillus, Aerococcus, and Alkalibacterium showed their strong and significant correlation (p value < 0.05) with various antibiotic resistance mechanisms. ARGs of different classes (blaTEM, blaSHV, blaCTX, tetX, vanA, aac3-II, mcr-1, intI-1, and intI2) were also successfully amplified in the metagenomes of SMT samples using their specific primers. The prevalence of ARGs in inhabitant bacteria of smokeless tobacco products suggests making steady policies to regulate the hygiene of commercial smokeless tobacco products.
Collapse
Affiliation(s)
- Akanksha Vishwakarma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India, 226025
| | - Digvijay Verma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India, 226025.
| |
Collapse
|
2
|
Joshi S, Pham K, Moe L, McNees R. Exploring the Microbial Diversity and Composition of Three Cigar Product Categories. MICROBIAL ECOLOGY 2024; 87:107. [PMID: 39162854 PMCID: PMC11335948 DOI: 10.1007/s00248-024-02425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
Cigars and cigarillos are emerging as popular tobacco alternatives to cigarettes. However, these products may be equally harmful to human health than cigarettes and are associated with similar adverse health effects. We used 16S rRNA gene amplicon sequencing to extensively characterize the microbial diversity and investigate differences in microbial composition across 23 different products representing three different cigar product categories: filtered cigar, cigarillo, and large cigar. High throughput sequencing of the V4 hypervariable region of the 16 s rRNA gene revealed 2124 Operational Taxonomic Units (OTUs). Our findings showed that the three categories of cigars differed significantly in observed richness and Shannon diversity, with filtered cigars exhibiting lower diversity compared to large cigars and cigarillos. We also found a shared and unique microbiota among different product types. Firmicutes was the most abundant phylum in all product categories, followed by Actinobacteria. Among the 16 genera shared across all product types were Bacillus, Staphylococcus, Pseudomonas, and Pantoea. Nine genera were exclusively shared by large cigars and cigarillos and an additional thirteen genera were exclusive to filtered cigars. Analysis of individual cigar products showed consistent microbial composition across replicates for most large cigars and cigarillos while filtered cigars showed more inter-product variability. These findings provide important insights into the microbial diversity of the different cigar product types.
Collapse
Affiliation(s)
- Sanjay Joshi
- Kentucky Tobacco Research and Development Center (KTRDC), University of Kentucky, Lexington, KY, 40546, USA
| | - Kent Pham
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Luke Moe
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Ruth McNees
- Kentucky Tobacco Research and Development Center (KTRDC), University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
3
|
Miluna-Meldere S, Rostoka D, Broks R, Viksne K, Ciematnieks R, Skadins I, Kroica J. The Effects of Nicotine Pouches and E-Cigarettes on Oral Microbes: A Pilot Study. Microorganisms 2024; 12:1514. [PMID: 39203357 PMCID: PMC11356086 DOI: 10.3390/microorganisms12081514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
It remains uncertain whether nicotine pouches and electronic cigarettes alter the oral environment and result in a high presence of periodontopathogenic bacteria in saliva, compared to that among cigarette users or non-tobacco users. In this study, saliva samples were collected from respondents using nicotine pouches, electronic cigarettes, and conventional cigarettes, alongside a control group of non-tobacco users. Polymerase chain reaction was used to identify clinical isolates of the following periodontal bacteria: Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia, Fusobacterium nucleatum, Fusobacterium periodonticum, Porphyromonas endodontalis, and Rothia mucilaginosa. The presence of some periodontal pathogens was detected in the saliva samples from users of nicotine pouches, electronic cigarettes, and conventional cigarettes but not in samples taken from the control group. Therefore, the initial results of this pilot study suggest that the presence of periodontopathogenic bacteria in the saliva of nicotine pouch and electronic cigarette users could alter the oral microbiome, leading to periodontal diseases. However, further quantitative investigation is needed.
Collapse
Affiliation(s)
| | - Dagnija Rostoka
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia; (R.B.); (I.S.); (J.K.)
| | - Renars Broks
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia; (R.B.); (I.S.); (J.K.)
| | - Kristine Viksne
- Institute on Oncology and Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia; (K.V.); (R.C.)
| | - Rolands Ciematnieks
- Institute on Oncology and Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia; (K.V.); (R.C.)
| | - Ingus Skadins
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia; (R.B.); (I.S.); (J.K.)
| | - Juta Kroica
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia; (R.B.); (I.S.); (J.K.)
| |
Collapse
|
4
|
Sajid M, Sharma U, Srivastava S, Yadav RK, Bharadwaj M. Microbial community and functions involved in smokeless tobacco product: a metagenomic approach. Appl Microbiol Biotechnol 2024; 108:395. [PMID: 38918238 PMCID: PMC11199310 DOI: 10.1007/s00253-024-13156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 06/27/2024]
Abstract
Smokeless tobacco products (STPs) are attributed to oral cancer and oral pathologies in their users. STP-associated cancer induction is driven by carcinogenic compounds including tobacco-specific nitrosamines (TSNAs). The TSNAs synthesis could enhanced due to the metabolic activity (nitrate metabolism) of the microbial populations residing in STPs, but identifying microbial functions linked to the TSNAs synthesis remains unexplored. Here, we rendered the first report of shotgun metagenomic sequencing to comprehensively determine the genes of all microorganisms residing in the Indian STPs belonging to two commercial (Moist-snuff and Qiwam) and three loose (Mainpuri Kapoori, Dohra, and Gudakhu) STPs, specifically consumed in India. Further, the level of nicotine, TSNAs, mycotoxins, and toxic metals were determined to relate their presence with microbial activity. The microbial population majorly belongs to bacteria with three dominant phyla including Actinobacteria, Proteobacteria, and Firmicutes. Furthermore, the STP-linked microbiome displayed several functional genes associated with nitrogen metabolism and antibiotic resistance. The chemical analysis revealed that the Mainpuri Kapoori product contained a high concentration of ochratoxins-A whereas TSNAs and Zink (Zn) quantities were high in the Moist-snuff, Mainpuri Kapoori, and Gudakhu products. Hence, our observations will help in attributing the functional potential of STP-associated microbiome and in the implementation of cessation strategies against STPs. KEY POINTS: •Smokeless tobacco contains microbes that can assist TSNA synthesis. •Antibiotic resistance genes present in smokeless tobacco-associated bacteria. •Pathogens in STPs can cause infections in smokeless tobacco users.
Collapse
Affiliation(s)
- Mohammad Sajid
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Upma Sharma
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Sonal Srivastava
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Ravi Kumar Yadav
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India.
| |
Collapse
|
5
|
Vishwakarma A, Verma D. Smokeless Tobacco Harbors Bacteria Involved in Biofilm Formation as Well as Salt and Heavy Metal Tolerance Activity. Appl Biochem Biotechnol 2024; 196:3034-3055. [PMID: 37610514 DOI: 10.1007/s12010-023-04689-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
In our previous culture-independent study on smokeless tobacco products, we have observed a strong positive correlation between several bacteria and genes involved in nitrate/nitrite reduction, biofilm formation, and pro-inflammation. Therefore, the present investigation was carried out to analyze the inhabitant bacterial population of the Indian ST products for assessing the health-associated risk attributes using culture-dependent approach. Traditional cultivation approaches recovered several bacterial isolates from commercial ST products on different culture media. A high colony formation unit (CFU) count was observed that ranged from 173 × 104 to 630.4 × 105 per gram of ST products. Of the 74 randomly selected and distinct bacterial isolates, 17 isolates showed a significantly enhanced growth (p-value < 0.05) in the presence of the aqueous tobacco extract. On biochemical characterization, these bacteria were identified as the member of Bacillus, Enterobacter, Micrococcus, Providencia, Serratia, Pantoea, Proteus, and Pseudomonas. Most of these bacteria also exhibited biofilm-forming activity, where eight bacterial isolates were identified for strong biofilm-forming action. 16S rRNA-based molecular characterization of these bacteria identified them as Bacillus subtilis, Bacillus paralicheniformis, Enterobacter sp., Serratia marcescens, Pantoea anthophila, and Enterobacter cloacae. Moreover, these bacteria also exhibited the potential to withstand high salt and heavy metal concentrations. The findings demonstrate that Indian ST products are heavily populated with wide bacterial species exhibiting potential in biofilm formation, heavy metal resistance, and salt tolerance.
Collapse
Affiliation(s)
- Akanksha Vishwakarma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Digvijay Verma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| |
Collapse
|
6
|
Stanfill SB, Hecht SS, Joerger AC, González PJ, Maia LB, Rivas MG, Moura JJG, Gupta AK, Le Brun NE, Crack JC, Hainaut P, Sparacino-Watkins C, Tyx RE, Pillai SD, Zaatari GS, Henley SJ, Blount BC, Watson CH, Kaina B, Mehrotra R. From cultivation to cancer: formation of N-nitrosamines and other carcinogens in smokeless tobacco and their mutagenic implications. Crit Rev Toxicol 2023; 53:658-701. [PMID: 38050998 DOI: 10.1080/10408444.2023.2264327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 12/07/2023]
Abstract
Tobacco use is a major cause of preventable morbidity and mortality globally. Tobacco products, including smokeless tobacco (ST), generally contain tobacco-specific N-nitrosamines (TSNAs), such as N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK), which are potent carcinogens that cause mutations in critical genes in human DNA. This review covers the series of biochemical and chemical transformations, related to TSNAs, leading from tobacco cultivation to cancer initiation. A key aim of this review is to provide a greater understanding of TSNAs: their precursors, the microbial and chemical mechanisms that contribute to their formation in ST, their mutagenicity leading to cancer due to ST use, and potential means of lowering TSNA levels in tobacco products. TSNAs are not present in harvested tobacco but can form due to nitrosating agents reacting with tobacco alkaloids present in tobacco during certain types of curing. TSNAs can also form during or following ST production when certain microorganisms perform nitrate metabolism, with dissimilatory nitrate reductases converting nitrate to nitrite that is then released into tobacco and reacts chemically with tobacco alkaloids. When ST usage occurs, TSNAs are absorbed and metabolized to reactive compounds that form DNA adducts leading to mutations in critical target genes, including the RAS oncogenes and the p53 tumor suppressor gene. DNA repair mechanisms remove most adducts induced by carcinogens, thus preventing many but not all mutations. Lastly, because TSNAs and other agents cause cancer, previously documented strategies for lowering their levels in ST products are discussed, including using tobacco with lower nornicotine levels, pasteurization and other means of eliminating microorganisms, omitting fermentation and fire-curing, refrigerating ST products, and including nitrite scavenging chemicals as ST ingredients.
Collapse
Affiliation(s)
- Stephen B Stanfill
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Andreas C Joerger
- Structural Genomics Consortium (SGC), Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pablo J González
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - Luisa B Maia
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | - Maria G Rivas
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - José J G Moura
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | | | - Nick E Le Brun
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Jason C Crack
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Pierre Hainaut
- Institute for Advanced Biosciences, Grenoble Alpes University, Grenoble, France
| | - Courtney Sparacino-Watkins
- University of Pittsburgh, School of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Vascular Medicine Institute, PA, USA
| | - Robert E Tyx
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Suresh D Pillai
- Department of Food Science & Technology, National Center for Electron Beam Research, Texas A&M University, College Station, TX, USA
| | - Ghazi S Zaatari
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - S Jane Henley
- Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Benjamin C Blount
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Clifford H Watson
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Mainz, Germany
| | - Ravi Mehrotra
- Centre for Health, Innovation and Policy Foundation, Noida, India
| |
Collapse
|
7
|
Shahid M, Srivastava S, Shukla P, Yadav R, Sajid M, Kumar A, Singh S, Bharadwaj M. Characterization of physiochemical parameters & their effect on microbial content of smokeless tobacco products marketed in north India. Indian J Med Res 2023; 158:542-551. [PMID: 38088421 PMCID: PMC10878486 DOI: 10.4103/ijmr.ijmr_1467_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND OBJECTIVES Smokeless tobacco (SLT) product consumption has profound public health implications for its users. The p H and moisture of SLTs determine the bioavailability of nicotine, the microbial structure dynamics and the amount of microbial conversion of tobacco alkaloids to carcinogenic tobacco-specific nitrosamines. This study aimed to characterize and compare the p H, moisture and alkaloid content of various SLT products. METHODS Thirty-seven SLT samples including khaini , snus, moist snuff, gul , pan masala , zarda , Mainpuri kapoori and qiwam were collected from the retail market around the National Capital Region in north India and their p H, moisture, nicotine and alkaloid content were measured. The p H and total nicotine were used to calculate the amount of free nicotine, the readily absorbed form, for each product by applying the Henderson-Hasselbalch equation. RESULTS The investigation showed that the SLTs varied drastically in their p H (5.36 to 10.27), moisture content (4.7 to 51.7%) and alkaloid content (0.82 to 35.87 mg/g). The p H and free nicotine levels of a product were found to be positively correlated, and the highest free nicotine content was reported in snus samples. Further, the moisture content was seen to impact the bacterial and fungal diversity in these samples. INTERPRETATION CONCLUSIONS Studies to detect the presence of pathogenic microbiological genera as well as potentially toxic constituents are warranted. The use of SLTs as an alternative to cigarette smoking should be discouraged, and cessation programmes must call attention to their detrimental effects and emphasize on benefits of quitting SLT consumption.
Collapse
Affiliation(s)
- Mohammad Shahid
- National Tobacco Testing Laboratory, ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
- ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
| | - Sonal Srivastava
- Division of Molecular Genetics and Biochemistry, ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
- ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
| | - Priti Shukla
- National Tobacco Testing Laboratory, ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
| | - Ravi Yadav
- Division of Molecular Genetics and Biochemistry, ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
| | - Mohammad Sajid
- Division of Molecular Genetics and Biochemistry, ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
| | - Anuj Kumar
- Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
| | - Shalini Singh
- National Tobacco Testing Laboratory, ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics and Biochemistry, ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
| |
Collapse
|
8
|
Penkova A, Kuziakova O, Gulaia V, Tiasto V, Goncharov NV, Lanskikh D, Zhmenia V, Baklanov I, Farniev V, Kumeiko V. Comprehensive clinical assays for molecular diagnostics of gliomas: the current state and future prospects. Front Mol Biosci 2023; 10:1216102. [PMID: 37908227 PMCID: PMC10613994 DOI: 10.3389/fmolb.2023.1216102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
Glioma is one of the most intractable types of cancer, due to delayed diagnosis at advanced stages. The clinical symptoms of glioma are unclear and due to a variety of glioma subtypes, available low-invasive testing is not effective enough to be introduced into routine medical laboratory practice. Therefore, recent advances in the clinical diagnosis of glioma have focused on liquid biopsy approaches that utilize a wide range of techniques such as next-generation sequencing (NGS), droplet-digital polymerase chain reaction (ddPCR), and quantitative PCR (qPCR). Among all techniques, NGS is the most advantageous diagnostic method. Despite the rapid cheapening of NGS experiments, the cost of such diagnostics remains high. Moreover, high-throughput diagnostics are not appropriate for molecular profiling of gliomas since patients with gliomas exhibit only a few diagnostic markers. In this review, we highlighted all available assays for glioma diagnosing for main pathogenic glioma DNA sequence alterations. In the present study, we reviewed the possibility of integrating routine molecular methods into the diagnosis of gliomas. We state that the development of an affordable assay covering all glioma genetic aberrations could enable early detection and improve patient outcomes. Moreover, the development of such molecular diagnostic kits could potentially be a good alternative to expensive NGS-based approaches.
Collapse
Affiliation(s)
- Alina Penkova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Olga Kuziakova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Gulaia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vladlena Tiasto
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Nikolay V. Goncharov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Daria Lanskikh
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Zhmenia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Ivan Baklanov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Vladislav Farniev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vadim Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| |
Collapse
|
9
|
Ning Y, Mai J, Hu BB, Lin ZL, Chen Y, Jiang YL, Wei MY, Zhu MJ. Study on the effect of enzymatic treatment of tobacco on HnB cigarettes and microbial succession during fermentation. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12577-2. [PMID: 37209161 DOI: 10.1007/s00253-023-12577-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/17/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Abstract
Starch and cellulose are the fundamental components of tobacco, while their excessive content will affect the quality of tobacco. Enzymatic treatment with different enzymes is a promising method to modulate the chemical composition and improve the sensory quality of tobacco leaves. In this study, enzymatic treatments, such as amylase, cellulase, and their mixed enzymes, were used to improve tobacco quality, which could alter the content of total sugar, reducing sugar, starch, and cellulose in tobacco leaves. The amylase treatment changed surface structure of tobacco leaves, increased the content of neophytadiene in tobacco by 16.48%, and improved the total smoking score of heat-not-burn (HnB) cigarette products by 5.0 points compared with the control. The Bacillus, Rubrobacter, Brevundimonas, Methylobacterium, Stenotrophomonas, Acinetobacter, Pseudosagedia-chlorotica, and Sclerophora-peronella were found to be significant biomarkers in the fermentation process by LEfSe analysis. The Basidiomycota and Agaricomycetes were significantly correlated with aroma and flavor, taste, and total score of HnB. The results showed that microbial community succession occurred due to amylase treatment, which promoted the formation of aroma compounds, and regulated the chemical composition of tobacco, and improved tobacco quality during tobacco fermentation. This study provides a method for enzymatic treatment to upgrade the quality of tobacco raw materials, thereby improving the quality of HnB cigarettes, and the potential mechanism is also revealed by chemical composition and microbial community analysis. KEY POINTS: Enzymatic treatment can change the chemical composition of tobacco leaves. The microbial community was significantly affected by enzymatic treatment. The quality of HnB cigarettes was significantly improved by amylase treatment.
Collapse
Affiliation(s)
- Ying Ning
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, 510006, People's Republic of China
| | - Jing Mai
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, 510006, People's Republic of China
| | - Bin-Bin Hu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China.
| | - Zhong-Long Lin
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| | - Yong-Lei Jiang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| | - Ming-Yang Wei
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, 510006, People's Republic of China.
- College of Life and Geographic Sciences, The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities Under the Department of Education of Xinjiang Uygur Autonomous Region, Kashi University, Kashi, 844006, People's Republic of China.
| |
Collapse
|
10
|
Sajid M, Sharma P, Srivastava S, Hariprasad R, Singh H, Bharadwaj M. Alteration of oral bacteriome of smokeless tobacco users and their association with oral cancer. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12534-z. [PMID: 37154908 DOI: 10.1007/s00253-023-12534-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023]
Abstract
Smokeless tobacco (SLT) is certainly one of the major risk factors associated with oral cancer. Disruption of oral microbiota-host homeostasis contributes to the progression of oral cancer. Here, we profiled SLT users' oral bacterial composition and inferred their functions by sequencing 16S rDNA V3-V4 region and PICRUSt2, respectively. Oral bacteriome of SLT users (with or without oral premalignant lesions), SLT with alcohol co-users, and non-SLT consumers were compared. Oral bacteriome is shaped primarily by SLT use and the incidence of oral premalignant lesions (OPL). A significantly increased bacterial α-diversity was monitored in SLT users with OPL compared to in SLT users without OPL and non-users, whereas β-diversity was significantly explained by OPL status. Overrepresented genera were Prevotella, Fusobacterium, Veillonella, Haemophilus, Capnocytophaga, and Leptotrichia in SLT users having OPL. LEfSe analysis identified 16 genera as a biomarker that were differentially abundant in SLT users having OPL. The functional prediction of genes significantly increased for several metabolic pathways, more importantly, were nitrogen metabolism, nucleotide metabolism, energy metabolism, and biosynthesis/biodegradation of secondary metabolites in SLT users having OPL. Furthermore, HPV-16 and EBV, but not HPV-18, were considerably connected with the SLT users having OPL. Overall, this study provides evidence that SLT utilization and OPL development are associated with oral bacteriome dysbiosis indicating the enrichment of bacterial species known for their contribution to oral carcinogenesis. Therefore, delineating the cancer-inducing bacterial population in SLT users will facilitate the future development of microbiome-targeted therapies. KEY POINTS: • SLT consumption significantly elevates oral bacterial diversity. • Prevalent significant genera are Prevotella, Veillonella, and Haemophilus in SLT users with OPL. • SLT promotes the occurrence of the cancer-inducing bacterial population.
Collapse
Affiliation(s)
- Mohammad Sajid
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Uttar Pradesh, Noida, India
| | - Pragya Sharma
- Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Uttar Pradesh, Noida, India
| | - Sonal Srivastava
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Uttar Pradesh, Noida, India
| | - Roopa Hariprasad
- Division of Clinical Oncology, ICMR-National Institute of Cancer Prevention and Research, Uttar Pradesh, Noida, India
| | - Harpreet Singh
- Division of Biomedical Informatics, Indian Council of Medical Research (ICMR), Ansari Nagar, New Delhi, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Uttar Pradesh, Noida, India.
| |
Collapse
|
11
|
Sami A, Elimairi I, Ryan CA, Stanton C, Patangia D, Ross RP. Altered oral microbiome in Sudanese Toombak smokeless tobacco users carries a newly emerging risk of squamous cell carcinoma development and progression. Sci Rep 2023; 13:6645. [PMID: 37095112 PMCID: PMC10125980 DOI: 10.1038/s41598-023-32892-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
There are an estimated 6-10 million smokeless tobacco (Toombak) users in Sudan, the majority being males. Toombak is known to be a carcinogenic product that is likely to modify the oral microbiome spatiality into a high-risk potential for the development and progression of oral cancer, but previous studies are lacking in this field. Here, we endeavour for the first time the exploration of the oral microbiome in key mucosal areas of the oral cavity and assess the microbiome variations in premalignant and oral squamous cell carcinoma (OSCC) samples from both users and non-users of Toombak. 16S rRNA sequencing was performed on DNA obtained from pooled saliva, oral mucosa and supragingival plaque from 78 Sudanese users and non-users of Toombak, aged between 20 and 70 years. In 32 of the pooled saliva samples, the mycobiome (fungal) environment was analysed through ITS sequencing. Then, 46 formalin-fixed paraffin-embedded samples of premalignant and OSCC samples were collected, and their associated microbiomes sequenced. The oral Sudanese microbiome was found to be enriched in Streptococcaceae, but Staphylococcaceae were significantly more abundant amongst Toombak users. Genera enriched in the oral cavity of Toombak users included Corynebacterium_1 and Cardiobacterium while in non-users, Prevotella, Lactobacillus and Bifidobacterium were prominent. Aspergillus was the most abundant fungus in the mouths of Toombak users with a marked loss of Candida. The genus Corynebacterium_1 was abundant in the buccal, floor of the mouth and saliva microbiomes as well as in oral cancer samples from Toombak users indicating a possible role for this genus in the early stages of oral cancer development. An oral cancer microbiome that favours poor survival and metastasis in those who use Toombak also emerged that includes the genera Stenotrophomonas and Schlegelella. Those utilising Toombak carry an altered oral microbiome that may be an additional risk factor for this products carcinogenicity to the oral structures. These significant microbiome modulations are a newly emerging key driving factor in oral cancer development and progression in Toombak users while it is also shown that Toombak users carry an oral cancer microbiome that may increase the potential for a poorer prognosis.
Collapse
Affiliation(s)
- Amel Sami
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, T12 YN60, Ireland
- Department of Oral and Maxillofacial Surgery and Oral Medicine, Faculty of Dentistry, National Ribat University, Nile street, 1111, Khartoum, Sudan
| | - Imad Elimairi
- Department of Oral and Maxillofacial Surgery and Oral Medicine, Faculty of Dentistry, National Ribat University, Nile street, 1111, Khartoum, Sudan
| | - C Anthony Ryan
- Department of Paediatrics and Child Health, University College Cork, Cork, T12 DFK4, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland.
| | - Dhrati Patangia
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, T12 YN60, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, T12 YN60, Ireland
| |
Collapse
|
12
|
Sajid M, Srivastava S, Yadav RK, Joshi L, Bharadwaj M. Fungal Community Composition and Function Associated with Loose Smokeless Tobacco Products. Curr Microbiol 2023; 80:131. [PMID: 36894760 DOI: 10.1007/s00284-023-03237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023]
Abstract
Smokeless tobacco products (STPs) contain several microbial communities which are responsible for the formation of carcinogens, like tobacco-specific nitrosamine (TSNAs). A majority of STPs are sold in loose/unpackaged form which can be loaded with a diverse microbial population. Here, the fungal population and mycotoxins level of three popular Indian loose STPs, Dohra, Mainpuri Kapoori (MK), and loose leaf-chewing tobacco (LCT) was examined using metagenomic sequencing of ITS1 DNA segment of the fungal genome and LC-MS/MS, respectively. We observed that Ascomycota was the most abundant phylum and Sterigmatomyces and Pichia were the predominant fungal genera in loose STPs. MK displayed the highest α-diversity being enriched with pathogenic fungi Apiotrichum, Aspergillus, Candida, Fusarium, Trichosporon, and Wallemia. Further, FUNGuild analysis revealed an abundance of saprotrophs in MK, while pathogen-saprotroph-symbiotroph were abundant in Dohra and LCT. The level of a fungal toxin (ochratoxins A) was high in the MK product. This study caution that loose STPs harbor various harmful fungi that can infect their users and deliver fungal toxins or disrupt the oral microbiome of SLT users which can contribute to several oral pathologies.
Collapse
Affiliation(s)
- Mohammad Sajid
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
| | - Sonal Srivastava
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
| | - Ravi K Yadav
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
| | - Lata Joshi
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India.
| |
Collapse
|
13
|
Vishwakarma A, Srivastava A, Mishra S, Verma D. Taxonomic and functional profiling of Indian smokeless tobacco bacteriome uncovers several bacterial-derived risks to human health. World J Microbiol Biotechnol 2022; 39:20. [PMID: 36409379 DOI: 10.1007/s11274-022-03461-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022]
Abstract
Smokeless tobacco (ST) consumption keeps human oral health at high risk which is one of the major reasons for oral tumorigenesis. The chemical constituents of the ST products have been well discussed; however, the inhabitant microbial diversity of the ST products is less explored especially from south Asian regions. Therefore, the present investigation discusses the bacteriome-based analysis of indigenous tobacco products. The study relies on 16S amplicon-based bacteriome analysis of Indian smokeless tobacco (ST) products using a metagenomic approach. A total of 59,15,143 high-quality reads were assigned to 34 phyla, 82 classes, 176 orders, 256 families, 356 genera, and 154 species using the SILVA database. Of the phyla (> 1%), Firmicutes dominate among the Indian smokeless tobacco followed by Proteobacteria, Bacteroidetes, and Actinobacteria (> 1%). Whereas, at the genera level (> 1%), Lysinibacillus, Dickeya, Terribacillus, and Bacillus dominate. The comparative analysis between the loose tobacco (LT) and commercial tobacco (CT) groups showed no significant difference at the phyla level, however, only three genera (Bacillus, Aerococcus, and Halomonas) were identified as significantly different between the groups. It indicates that CT and LT tobacco share similar bacterial diversity and poses equal health risks to human oral health. The phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt 2.0) based analysis uncovered several genes involved in nitrate/nitrite reduction, biofilm formation, and pro-inflammation that find roles in oral pathogenesis including oral cancer. The strong correlation analysis of these genes with several pathogenic bacteria suggests that tobacco products pose a high bacterial-derived risk to human health. The study paves the way to understand the bacterial diversity of Indian smokeless tobacco products and their putative functions with respect to human oral health. The study grabs attention to the bacterial diversity of the smokeless tobacco products from a country where tobacco consumers are rampantly prevalent however oral health is of least concern.
Collapse
Affiliation(s)
- Akanksha Vishwakarma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Ankita Srivastava
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - SukhDev Mishra
- Department of Bio-Statistics and Data Management, ICMR-National Institute of Occupational Health, Ahmedabad, India
| | - Digvijay Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| |
Collapse
|
14
|
Smokeless tobacco consumption induces dysbiosis of oral mycobiome: a pilot study. Appl Microbiol Biotechnol 2022; 106:5643-5657. [PMID: 35913514 DOI: 10.1007/s00253-022-12096-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/02/2022]
Abstract
Smokeless tobacco (SLT) alters the oral microbiome of smokeless tobacco users. Dysbiosis of oral bacteriome has been determined; however, the mycobiome of SLT users has not been characterized. The oral mycobiome was assayed by amplification and sequencing of the fungal internal transcribed spacer (ITS1) region from oral swab samples of non-SLT users, SLT users (with or without oral lesions), and SLT with alcohol users. We observed that the richness and diversity of oral mycobiome were significantly decreased in SLT with oral lesions users than in non-users. The β-diversity analysis showed significant dissimilarity of oral mycobiome between non-users and SLT with oral lesions users. Linear discriminant analysis effect size and random forest analysis of oral mycobiome affirm that the genus Pichia was typical for SLT with oral lesions users. Prevalence of the fungal genus Pichia correlates positively with Starmerella, Mortierella, Fusarium, Calonectria, and Madurella, but is negatively correlated with Pyrenochaeta, Botryosporium, and Alternaria. Further, the determination of oral mycobiome functionality showed a high abundance of pathotroph-saprotroph-symbiotroph and animal pathogen-endophyte-epiphyte-undefined saprotroph at trophic and guild levels, respectively, indicating possibly major changes in normal growth repression of types of fungi. The oral mycobiome in SLT users was identified and comprehensively analyzed for the first time. SLT intake is associated with oral mycobiome dysbiosis and such alterations of the oral mycobiome may contribute to oral carcinogenesis in SLT users. This study will provide a basis for further large-scale investigations on the potential role of the mycobiome in SLT-induced oral cancer. KEY POINTS: • SLT induces dysbiosis of the oral microbiome that can contribute to oral cancer. • Oral mycobiome diversity is noticeably reduced in SLT users having oral lesions. • Occurrence of Pichia can be used as a biomarker for SLT users having oral lesions.
Collapse
|
15
|
Delineating the Bacteriome of Packaged and Loose Smokeless Tobacco Products Available in North India. Appl Microbiol Biotechnol 2022; 106:4129-4144. [PMID: 35604437 DOI: 10.1007/s00253-022-11979-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
Smokeless tobacco product (STP) consumption is a significant public health threat across the globe. STPs are not only a storehouse of carcinogens and toxicants but also harbor microbes that aid in the conversion of tobacco alkaloids to carcinogenic tobacco-specific nitrosamines (TSNAs), thereby posing a further threat to the health of its consumers. The present study analyzed the bacterial diversity of popular dry and loose STPs by 16S rRNA gene sequencing. This NGS-based investigation revealed four dominant phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria and identified 549 genera, Prevotella, Bacteroides, and Lactobacillus constituting the core bacteriome of these STPs. The most significantly diverse bacteriome profile was displayed by the loose STP Mainpuri kapoori. The study further predicted the functional attributes of the prevalent genera by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) algorithm. Genes encoding for nitrate and nitrite reduction and transport enzymes, antibiotic resistance, multi-drug transporters and efflux pumps, secretion of endo- and exotoxin, and other pro-inflammatory molecules were identified. The loose STPs showed the highest level of nitrogen metabolism genes which can contribute to the synthesis of TSNAs. This study reveals the bacteriome of Indian domestic loose STPs that stagger behind in manufacturing and storage stringencies. Our results raise an alarm that the consumption of STPs harboring pathogenic genera can potentially lead to the onset of several oral and systemic diseases. Nevertheless, an in-depth correlation analysis of the microbial diversity of STPs and their elicit impact on consumer health is warranted. KEY POINTS: • Smokeless tobacco harbors bacteria that aid in synthesis of carcinogenic nitrosamines. • Most diverse bacteriome profile was displayed by loose smokeless tobacco products. • Pathogenic genera in these products can harm the oral and systemic health of users.
Collapse
|