1
|
Heinen L, Groh S, Dzubiella J. Tuning nonequilibrium colloidal structure in external fields by density-dependent state switching. Phys Rev E 2024; 110:024604. [PMID: 39294997 DOI: 10.1103/physreve.110.024604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/22/2024] [Indexed: 09/21/2024]
Abstract
Biological cells have the ability to switch internal states depending on the density of other cells in their local environment, referred to as "quorum sensing." The latter can be utilized to control collective structuring, such as in biofilm formation. In this work, we study a simple quorum sensing model of ideal (noninteracting) colloids with a switchable internal degree of freedom in the presence of external potentials. The colloids have two possible discrete states, in which they are affected differently by the external field, and switch with rates dependent on the local density in their environment. We study this model with reactive Brownian dynamics simulations, as well as with an appropriate reaction-diffusion theory. We find remarkable structuring in the system controlled by the density-mediated interactions between the ideal colloids. We report results of different functional forms for the rate dependence and quantify the influence of their parameters, in particular, discuss the role of the spatiotemporal sensing range, i.e., how the resulting structures depend on how the environmental information is "measured" by the colloids. Especially in the case of a rate function with sigmoidal dependence on local density, i.e., requiring a threshold density for switching, we observe significant correlation effects in the density profiles which are tuneable by the sensing ranges but also sensitive to noise and fluctuations. Hence, our model gives some basic insights into the nonequilibrium structuring mediated by simple quorum sensing protocols.
Collapse
|
2
|
Mettert EL, Kiley PJ. Fe-S cluster homeostasis and beyond: The multifaceted roles of IscR. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119749. [PMID: 38763301 PMCID: PMC11309008 DOI: 10.1016/j.bbamcr.2024.119749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/29/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024]
Abstract
The role of IscR in regulating the transcription of genes involved in Fe-S cluster homeostasis has been well established for the model organism Escherichia coli K12. In this bacterium, IscR coordinates expression of the Isc and Suf Fe-S cluster assembly pathways to meet cellular Fe-S cluster demands shaped by a variety of environmental cues. However, since its initial discovery nearly 25 years ago, there has been growing evidence that IscR function extends well beyond Fe-S cluster homeostasis, not only in E. coli, but in bacteria of diverse lifestyles. Notably, pathogenic bacteria have exploited the ability of IscR to respond to changes in oxygen tension, oxidative and nitrosative stress, and iron availability to navigate their trajectory in their respective hosts as changes in these cues are frequently encountered during host infection. In this review, we highlight these broader roles of IscR in different cellular processes and, in particular, discuss the importance of IscR as a virulence factor for many bacterial pathogens.
Collapse
Affiliation(s)
- Erin L Mettert
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Patricia J Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Tubergen PJ, Medlock G, Moore A, Zhang X, Papin JA, Danna CH. A computational model of Pseudomonas syringae metabolism unveils a role for branched-chain amino acids in Arabidopsis leaf colonization. PLoS Comput Biol 2023; 19:e1011651. [PMID: 38150474 PMCID: PMC10775980 DOI: 10.1371/journal.pcbi.1011651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/09/2024] [Accepted: 11/02/2023] [Indexed: 12/29/2023] Open
Abstract
Bacterial pathogens adapt their metabolism to the plant environment to successfully colonize their hosts. In our efforts to uncover the metabolic pathways that contribute to the colonization of Arabidopsis thaliana leaves by Pseudomonas syringae pv tomato DC3000 (Pst DC3000), we created iPst19, an ensemble of 100 genome-scale network reconstructions of Pst DC3000 metabolism. We developed a novel approach for gene essentiality screens, leveraging the predictive power of iPst19 to identify core and ancillary condition-specific essential genes. Constraining the metabolic flux of iPst19 with Pst DC3000 gene expression data obtained from naïve-infected or pre-immunized-infected plants, revealed changes in bacterial metabolism imposed by plant immunity. Machine learning analysis revealed that among other amino acids, branched-chain amino acids (BCAAs) metabolism significantly contributed to the overall metabolic status of each gene-expression-contextualized iPst19 simulation. These predictions were tested and confirmed experimentally. Pst DC3000 growth and gene expression analysis showed that BCAAs suppress virulence gene expression in vitro without affecting bacterial growth. In planta, however, an excess of BCAAs suppress the expression of virulence genes at the early stages of infection and significantly impair the colonization of Arabidopsis leaves. Our findings suggesting that BCAAs catabolism is necessary to express virulence and colonize the host. Overall, this study provides valuable insights into how plant immunity impacts Pst DC3000 metabolism, and how bacterial metabolism impacts the expression of virulence.
Collapse
Affiliation(s)
- Philip J. Tubergen
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Greg Medlock
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Anni Moore
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Xiaomu Zhang
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Cristian H. Danna
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
4
|
Carezzano ME, Paletti Rovey MF, Cappellari LDR, Gallarato LA, Bogino P, Oliva MDLM, Giordano W. Biofilm-Forming Ability of Phytopathogenic Bacteria: A Review of its Involvement in Plant Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112207. [PMID: 37299186 DOI: 10.3390/plants12112207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Phytopathogenic bacteria not only affect crop yield and quality but also the environment. Understanding the mechanisms involved in their survival is essential to develop new strategies to control plant disease. One such mechanism is the formation of biofilms; i.e., microbial communities within a three-dimensional structure that offers adaptive advantages, such as protection against unfavorable environmental conditions. Biofilm-producing phytopathogenic bacteria are difficult to manage. They colonize the intercellular spaces and the vascular system of the host plants and cause a wide range of symptoms such as necrosis, wilting, leaf spots, blight, soft rot, and hyperplasia. This review summarizes up-to-date information about saline and drought stress in plants (abiotic stress) and then goes on to focus on the biotic stress produced by biofilm-forming phytopathogenic bacteria, which are responsible for serious disease in many crops. Their characteristics, pathogenesis, virulence factors, systems of cellular communication, and the molecules implicated in the regulation of these processes are all covered.
Collapse
Affiliation(s)
- María Evangelina Carezzano
- Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Córdoba X5804BYA, Argentina
- Departamento de Biología Molecular; Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba X5804BYA, Argentina
- Departamento de Microbiología e Inmunología, UNRC, Río Cuarto, Córdoba X5804BYA, Argentina
| | - María Fernanda Paletti Rovey
- Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Córdoba X5804BYA, Argentina
- Departamento de Microbiología e Inmunología, UNRC, Río Cuarto, Córdoba X5804BYA, Argentina
| | - Lorena Del Rosario Cappellari
- Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Córdoba X5804BYA, Argentina
- Departamento de Biología Molecular; Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba X5804BYA, Argentina
| | | | - Pablo Bogino
- Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Córdoba X5804BYA, Argentina
- Departamento de Biología Molecular; Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba X5804BYA, Argentina
| | - María de Las Mercedes Oliva
- Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Córdoba X5804BYA, Argentina
- Departamento de Microbiología e Inmunología, UNRC, Río Cuarto, Córdoba X5804BYA, Argentina
| | - Walter Giordano
- Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Córdoba X5804BYA, Argentina
- Departamento de Biología Molecular; Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba X5804BYA, Argentina
| |
Collapse
|