1
|
Fan W, Wang A, Che X, Xu S, Chen M, Chi Z. Lipid profiles of green conversion from corn-ethanol co-product via Aspergillus niger. BIORESOURCE TECHNOLOGY 2025; 426:132384. [PMID: 40074091 DOI: 10.1016/j.biortech.2025.132384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
High-value recycling of agro-industrial by-products is the focus of global sustainable development. A method of the recovery and utilization of corn-ethanol co-product to produce functional lipids via Aspergillus niger (A. niger) was proposed. The lipid changes in distillers dried grains with solubles (DDGS) were monitored via lipidomics. 648 lipids (five classes, 29 subclasses) were identified, including 75 fatty acyls, 203 glycerolipids, 184 glycerophospholipids, 169 sphingolipids, and 17 glucosylsphingoshine. Glycerolipids were the most abundant lipids, accounting for 31%. As fermentation proceeded, the concentration of lipids with 1-9 unsaturated bonds steadily increased. Oleic acid and linoleic acid were the main accumulated fatty acids. The pathways enrichment results showed glycerophospholipid metabolism, glycerolipids metabolism, sphingolipid metabolism, and biosynthesis of unsaturated fatty acids were the key metabolic pathways involved during DDGS fermentation. These results provided a comprehensive knowledge of the lipid profiles in fermented DDGS and proposed a new approach for high-value utilization of DDGS.
Collapse
Affiliation(s)
- Weiwei Fan
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Ayong Wang
- City Inspection and Testing Center of Qixia, Shandong Province 265300, PR China
| | - Xiaoying Che
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Siyu Xu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Ming Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
2
|
Ding Z, Zhao J, Liu R, Ni B, Wang Y, Li W, Li X. Molecular cloning, overexpression, characterization, and mechanism explanation of an esterase RasEst3 for ester synthesis under aqueous phase. Int J Biol Macromol 2025; 307:142190. [PMID: 40101817 DOI: 10.1016/j.ijbiomac.2025.142190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/17/2025] [Accepted: 03/15/2025] [Indexed: 03/20/2025]
Abstract
Fatty acid esters are widely used in fragrance compounds, solvents, lubricants, and biofuels. Enzymatic synthesis of these esters in aqueous phase is an environmentally friendly approach. In this study, an esterase RasEst3 from Rasamsonia emersonii was identified for fatty acid ester synthesis through sequence alignment. The gene encoding RasEst3 was heterologously expressed in Escherichia coli BL21(DE3), and its enzymatic properties were analyzed. The enzyme exhibited optimal activity at pH 3.5 and 30 °C, with a preference for medium-chain substrates. Structurally, RasEst3 contains a lid domain and a catalytic domain, with a catalytic triad composed of Ser146-His227-Asp214. The smaller pocket spatial site resistance and the hydrophobicity of the substrate channel facilitate effective substrate binding to the active center. Site-directed mutagenesis and molecular dynamics simulations revealed that the oxygen anion holes formed by Gly69 and Thr70, along with the π-bond stacking formed by Tyr112 and Tyr145, play crucial roles in catalysis. After removing a loop region from RasEst3, its ethyl octanoate synthesis activity increased by 253.22 % compared to the wild-type enzyme. This study not only clarifies the structure-function relationship of RasEst3 but also provides valuable insights for developing novel biocatalysts in green chemistry.
Collapse
Affiliation(s)
- Ze Ding
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jingrong Zhao
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Ruiqi Liu
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Bingqian Ni
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yize Wang
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Weiwei Li
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China
| | - Xiuting Li
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China; China Bio-Specialty Food Enzyme Technology Research Development and Promotion Center, Beijing 100048, China.
| |
Collapse
|
3
|
Liang J, Yuan H, Fei Y, Wang H, Qu C, Bai W, Liu G. Effects of Saccharomyces cerevisiae and Cyberlindnera fabianii Inoculation on Rice-Flavor Baijiu Fermentation. Foods 2024; 13:3175. [PMID: 39410210 PMCID: PMC11476301 DOI: 10.3390/foods13193175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Rice-flavor baijiu is a distilled Chinese spirit prepared from Xiaoqu culture. However, its dull taste may be a market limitation. In order to enhance the flavor profile of rice-flavor baijiu, two ester-producing yeast strains (Saccharomyces cerevisiae and Cyberlindnera fabianii) were inoculated for fermentation. At the end of the fermentation, the total alcohol and ester contents had also increased by 43.3% and 29.8%, respectively, and the number of ester species had increased by eight. Additionally, eleven flavor substances had significant contributions in the inoculated fermentation process, including several different esters and alcohols. A macrogenomic analysis revealed that the majority of the gene abundances associated with the alcohol, acid, and ester pathways were elevated by the third day of inoculated fermentation, and greater abundances of Saccharomyces cerevisiae, Cyberlindnera fabianii, Lichtheimia ramosa, Rhizopus delemar, and Rhizopus oryzaefive, annotated with these genes, were observed from either the pre-fermentation stage or post-fermentation stage. The results demonstrate that two added strains are associated with an increase in the content of the flavor substances. These findings may prove beneficial in enhancing the quality of rice-flavor baijiu through using inoculated fermentation with ester-producing yeast.
Collapse
Affiliation(s)
- Jinglong Liang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.L.); (H.Y.); (Y.F.); (H.W.); (C.Q.); (W.B.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Haishan Yuan
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.L.); (H.Y.); (Y.F.); (H.W.); (C.Q.); (W.B.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yongtao Fei
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.L.); (H.Y.); (Y.F.); (H.W.); (C.Q.); (W.B.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.L.); (H.Y.); (Y.F.); (H.W.); (C.Q.); (W.B.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chunyun Qu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.L.); (H.Y.); (Y.F.); (H.W.); (C.Q.); (W.B.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weidong Bai
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.L.); (H.Y.); (Y.F.); (H.W.); (C.Q.); (W.B.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Gongliang Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.L.); (H.Y.); (Y.F.); (H.W.); (C.Q.); (W.B.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
4
|
Yi X, Xia H, Huang P, Ma S, Wu C. Exploring Community Succession, Assembly Patterns, and Metabolic Functions of Ester-Producing-Related Microbiota during the Production of Nongxiangxing baijiu. Foods 2024; 13:3169. [PMID: 39410204 PMCID: PMC11476053 DOI: 10.3390/foods13193169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Esters are vital flavor compounds in Chinese Nongxiangxing baijiu and greatly affect the quality of baijiu. Microbial communities inhabiting fermented grains (FGs) have a marked impact on esters. However, the specific microorganisms and their assembly patterns remain unclear. This study utilized high-throughput sequencing and a culture-based method to reveal ester-producing microorganisms. A total of 33 esters were detected, including 19 ethyl esters, 9 linear chain esters, and 2 branched chain esters. A correlation analysis indicated that the bacterial genus Lactobacillus (relative abundance in average: 69.05%) and fungal genera Pichia (2.40%), Aspergillus (11.84%), Wickerhamomyces (0.60%), Thermomyces (3.57%), Saccharomycopsis (7.87%), Issatchenkia (0.96%), and Thermoascus (10.83%) were dominant and associated with esters production and their precursors. The numbers of esters positively correlated with them were 1, 17, 3, 2, 1, 1, 1, and 1, respectively. The modified stochasticity ratio (MST) index and Sloan neutral model revealed that bacteria were predominantly governed by deterministic processes while fungal assemblies were more stochastic. Saturnispora silvae and Zygosaccharomyces bailii were isolated and identified with ester synthesis potential. PICRUSt2 analysis showed that fungi in FG had a high potential for synthesizing ethanol, while 14 enzymes related to esters synthesis were all produced by bacteria, especially enzymes catalyzing the synthesis of acyl-CoA. In addition, ester synthesis was mainly catalyzed by carboxylesterase, acylglycerol lipase and triacylglycerol lipase. These findings may provide insights into ester production mechanism and potential strategies to improve the quality of Nongxiangxing baijiu.
Collapse
Affiliation(s)
| | | | | | | | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (X.Y.); (H.X.); (P.H.); (S.M.)
| |
Collapse
|
5
|
Yang S, Lv S, Xu L, Zhang F, Zhao J, Li H, Sun J, Sun B. Influences of thioalcohols on the release of aromas in sesame-flavor baijiu. Food Res Int 2024; 191:114733. [PMID: 39059966 DOI: 10.1016/j.foodres.2024.114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
This study investigated the interactions between 2-furylmethanethiol, benzenemethanethiol, and 18 skeletal aroma-active compounds as well as four aroma notes in sesame-flavor baijiu based on the Feller Additive Model, the Odor Activity Value (OAV) Approach, and the Sigma-Tau (σ-τ) plots. In addition, a predictive model for the interactions between 2-furylmethanethiol and esters was developed, and the determinants of the interaction results in complex systems were explored. The results reveal that both thioalcohols interacted with the skeletal aroma-active compounds in a similar trend, where 2-furylmethanethiol tends to enhance the release of fruit and acid aroma. Moreover, the intensity of the thiols and their intensity ratio to the notes were the determinants of the interaction results in the multivariate blended system, with the lower the concentration of the thiols, the closer the ratio was to 1, and the more likely that additive interactions would take place. Predictive modeling showed that 2-furylmethanethiols were more likely to have additive or synergistic effects with esters when the olfactory thresholds of the esters were between 75.86 and 199.53 μg/L. Conversely, masking effects were more likely.
Collapse
Affiliation(s)
- Shiqi Yang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business, University, Beijing 100048, China
| | - Silei Lv
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business, University, Beijing 100048, China
| | - Ling Xu
- Shandong Bandaojing Co Ltd, Zibo 256300, Shandong, China
| | - Fengguo Zhang
- Shandong Bandaojing Co Ltd, Zibo 256300, Shandong, China
| | - Jiwen Zhao
- Shandong Bandaojing Co Ltd, Zibo 256300, Shandong, China
| | - Hehe Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business, University, Beijing 100048, China.
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business, University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business, University, Beijing 100048, China
| |
Collapse
|
6
|
Zhao J, Xu Y, Ding Z, Wu Q, Li W, Sun B, Li X. Discovery and mechanism explanation of a novel green biocatalyst esterase Bur01 from Burkholderia ambifaria for ester synthesis under aqueous phase. Int J Biol Macromol 2024; 272:132630. [PMID: 38810853 DOI: 10.1016/j.ijbiomac.2024.132630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Biocatalyst catalyzing the synthesis of esters under aqueous phase is an alternative with green and sustainable characteristics. Here, a biocatalyst esterase Bur01 was identified through genome sequencing and gene library construction from a Burkholderia ambifaria BJQ0010 with efficient ester synthesis property under aqueous phase for the first time. Bur01 was soluble expressed and the purified enzyme showed the highest activity at pH 4.0 and 40 °C. It had a broad substrate spectrum, especially for ethyl esters. The structure of Bur01 was categorized as a member of α/β fold hydrolase superfamily. The easier opening of lid under aqueous phase and the hydrophobicity of substrate channel contribute to easier access to the active center for substrate. Molecular docking and site-directed mutation demonstrated that the oxyanion hole Ala22, Met112 and π-bond stacking between His24 and Phe217 played essential roles in catalytic function. The mutants V149A, V149I, L159I and F137I enhanced enzyme activity to 1.42, 1.14, 1.32 and 2.19 folds due to reduced spatial resistance and increased hydrophobicity of channel and ethyl octanoate with the highest conversion ratio of 68.28 % was obtained for F137I. These results provided new ideas for developing green catalysts and catalytic basis of mechanistic studies for ester synthetase under aqueous phase.
Collapse
Affiliation(s)
- Jingrong Zhao
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Youqiang Xu
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China
| | - Ze Ding
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qiuhua Wu
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Weiwei Li
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China
| | - Baoguo Sun
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiuting Li
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China; China Bio-Specialty Food Enzyme Technology Research Development and Promotion Center, Beijing 100048, China.
| |
Collapse
|
7
|
Huang H, Xu Y, Lin M, Li X, Zhu H, Wang K, Sun B. Complete genome sequence of Acinetobacter indicus and identification of the hydrolases provides direct insights into phthalate ester degradation. Food Sci Biotechnol 2024; 33:103-113. [PMID: 38186616 PMCID: PMC10766577 DOI: 10.1007/s10068-023-01334-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/30/2023] [Accepted: 05/04/2023] [Indexed: 01/09/2024] Open
Abstract
A strain designated Acinetobacter indicus WMB-7 with the ability to hydrolyze phthalate esters (PAEs) was isolated from the fermented grains of Baijiu. The genome of the strain was sequenced with a length of 3,256,420 bp and annotated with 3183 genes, of which 36 hydrolases encoding genes were identified. The hydrolases were analyzed by protein structure modeling and molecular docking, and 14 enzymes were docked to the ligand di-butyl phthalate with the catalytic active regions, and showed binding affinity. The 14 enzymes were expressed in E. coli and 5 of them showed the ability for PAEs hydrolysis. Enzyme GK020_RS15665 showed high efficiency for PAEs hydrolysis and could efficiently hydrolyze di-butyl phthalate under an initial concentration of 1000 mg/L with a half-life of 4.24 h. This work combined a series of methods for identifying PAEs hydrolases and offered a molecular basis for PAEs degradation of A. indicus strains from Baijiu. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01334-w.
Collapse
Affiliation(s)
- Huiqin Huang
- School of Food and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | - Youqiang Xu
- School of Food and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | - Mengwei Lin
- School of Food and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | - Xiuting Li
- School of Food and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing, 100048 China
| | - Hua Zhu
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing, 100048 China
- Beijing Huadu Wine Food Limited Liability Company, Beijing, 102212 China
| | - Kun Wang
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing, 100048 China
- Beijing Huadu Wine Food Limited Liability Company, Beijing, 102212 China
| | - Baoguo Sun
- School of Food and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing, 100048 China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048 China
| |
Collapse
|
8
|
Wu Y, Duan Z, Niu J, Zhu H, Zhang C, Li W, Li X, Sun B. Spatial heterogeneity of microbiota and flavor across different rounds of sauce-flavor baijiu in Northern China. Food Chem X 2023; 20:100970. [PMID: 38144740 PMCID: PMC10739760 DOI: 10.1016/j.fochx.2023.100970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 12/26/2023] Open
Abstract
Sauce-flavor baijiu (SFB) is a traditional Chinese distilled liquor crafted through a distinctive brewing process, involving seven rounds of stack fermentation (SF) and pit fermentation (PF). To date, there remains a knowledge gap regarding the microbial succession and flavor throughout all rounds of SFB with distinctive northern characteristics. Through LEfSe analysis, Saccharopolyspora, Virgibacillus, Thermoascus and Thermomyces, and Lactobacillus and Issatchenkia were found to be the most differentially representative genera in SF and PF, respectively. A total of 93 volatile flavor compounds were found in base baijius through the gas-chromatography mass spectrometry. Moreover, 29 volatile flavor substances with significant difference in base baijius of different rounds were revealed using the OPLS-DA model and VIP values and Spearman correlation analysis shows that bacteria have a greater impact on differential flavor compounds than fungi. This study provides a new perspective and insight into the brewing of northern SFB.
Collapse
Affiliation(s)
- Yanfang Wu
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, PR China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zhongfu Duan
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, PR China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Jialiang Niu
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, PR China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Hua Zhu
- Beijing Huadu Distillery Food Co. Ltd, Beijing 102212, PR China
| | - Chengnan Zhang
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, PR China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Weiwei Li
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, PR China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, PR China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Baoguo Sun
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, PR China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| |
Collapse
|
9
|
Pan Y, Wang Y, Hao W, Zhou S, Duan C, Li Q, Wei J, Liu G. Exploring the Role of Active Functional Microbiota in Flavor Generation by Integrated Metatranscriptomics and Metabolomics during Niulanshan Baijiu Fermentation. Foods 2023; 12:4140. [PMID: 38002197 PMCID: PMC10669994 DOI: 10.3390/foods12224140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Active functional microbiota for producing volatile flavors is critical to Chinese baijiu fermentation. Microbial communities correlated with the volatile metabolites are generally explored using DNA-based sequencing and metabolic analysis. However, the active functional microbiota related to the volatile flavor compounds is poorly understood. In this study, an integrated metatranscriptomic and metabolomics analysis was employed to unravel the metabolite profiles comprehensively and the contributing active functional microbiota for flavor generation during Niulanshan baijiu fermentation. A total of 395, 83, and 181 compounds were annotated using untargeted metabolomics, including LC-MS, GC-MS, and HS-SPME-GC-MS, respectively. Significant variances were displayed in the composition of compounds among different time-point samples according to the heatmaps and orthogonal partial least-square discriminant analysis. The correlation between the active microbiota and the volatile flavors was analyzed based on the bidirectional orthogonal partial least squares discriminant analysis (O2PLS-DA) model. Six bacterial genera, including Streptococcus, Lactobacillus, Pediococcus, Campylobacter, Yersinia, and Weissella, and five fungal genera of Talaromyces, Aspergillus, Mixia, Rhizophagus, and Gloeophyllum were identified as the active functional microbiota for producing the volatile flavors. In summary, this study revealed the active functional microbial basis of unique flavor formation and provided novel insights into the optimization of Niulanshan baijiu fermentation.
Collapse
Affiliation(s)
- Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.P.); (C.D.); (Q.L.)
| | - Ying Wang
- Niulanshan Distillery, Beijing Shunxin Agriculture Company Limited, Beijing 101301, China; (Y.W.); (W.H.); (S.Z.)
| | - Wenjun Hao
- Niulanshan Distillery, Beijing Shunxin Agriculture Company Limited, Beijing 101301, China; (Y.W.); (W.H.); (S.Z.)
| | - Sen Zhou
- Niulanshan Distillery, Beijing Shunxin Agriculture Company Limited, Beijing 101301, China; (Y.W.); (W.H.); (S.Z.)
| | - Chengbao Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.P.); (C.D.); (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiushi Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.P.); (C.D.); (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinwang Wei
- Niulanshan Distillery, Beijing Shunxin Agriculture Company Limited, Beijing 101301, China; (Y.W.); (W.H.); (S.Z.)
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.P.); (C.D.); (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Khairunisa BH, Heryakusuma C, Ike K, Mukhopadhyay B, Susanti D. Evolving understanding of rumen methanogen ecophysiology. Front Microbiol 2023; 14:1296008. [PMID: 38029083 PMCID: PMC10658910 DOI: 10.3389/fmicb.2023.1296008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Production of methane by methanogenic archaea, or methanogens, in the rumen of ruminants is a thermodynamic necessity for microbial conversion of feed to volatile fatty acids, which are essential nutrients for the animals. On the other hand, methane is a greenhouse gas and its production causes energy loss for the animal. Accordingly, there are ongoing efforts toward developing effective strategies for mitigating methane emissions from ruminant livestock that require a detailed understanding of the diversity and ecophysiology of rumen methanogens. Rumen methanogens evolved from free-living autotrophic ancestors through genome streamlining involving gene loss and acquisition. The process yielded an oligotrophic lifestyle, and metabolically efficient and ecologically adapted descendants. This specialization poses serious challenges to the efforts of obtaining axenic cultures of rumen methanogens, and consequently, the information on their physiological properties remains in most part inferred from those of their non-rumen representatives. This review presents the current knowledge of rumen methanogens and their metabolic contributions to enteric methane production. It also identifies the respective critical gaps that need to be filled for aiding the efforts to mitigate methane emission from livestock operations and at the same time increasing the productivity in this critical agriculture sector.
Collapse
Affiliation(s)
| | - Christian Heryakusuma
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
| | - Kelechi Ike
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Biswarup Mukhopadhyay
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
- Virginia Tech Carilion School of Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Dwi Susanti
- Microbial Discovery Research, BiomEdit, Greenfield, IN, United States
| |
Collapse
|
11
|
Li M, Li T, Zheng J, Qiao Z, Zhang K, Luo H, Zou W. Genome Analysis and Optimization of Caproic Acid Production of Clostridium butyricum GD1-1 Isolated from the Pit Mud of Nongxiangxing Baijiu. J Microbiol Biotechnol 2023; 33:1337-1350. [PMID: 37583080 PMCID: PMC10619560 DOI: 10.4014/jmb.2304.04013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 08/17/2023]
Abstract
Caproic acid is a precursor substance for the synthesis of ethyl caproate, the main flavor substance of nongxiangxing baijiu liquor. In this study, Clostridium butyricum GD1-1, a strain with high caproic acid concentration (3.86 g/l), was isolated from the storage pit mud of nongxiangxing baijiu for sequencing and analysis. The strain's genome was 3,840,048 bp in length with 4,050 open reading frames. In addition, virulence factor annotation analysis showed C. butyricum GD1-1 to be safe at the genetic level. However, the annotation results using the Kyoto Encyclopedia of Genes and Genomes Automatic Annotation Server predicted a deficiency in the strain's synthesis of alanine, methionine, and biotin. These results were confirmed by essential nutrient factor validation experiments. Furthermore, the optimized medium conditions for caproic acid concentration by strain GD1-1 were (g/l): glucose 30, NaCl 5, yeast extract 10, peptone 10, beef paste 10, sodium acetate 11, L-cysteine 0.6, biotin 0.004, starch 2, and 2.0% ethanol. The optimized fermentation conditions for caproic acid production by C. butyricum GD1-1 on a single-factor basis were: 5% inoculum volume, 35°C, pH 7, and 90% loading volume. Under optimal conditions, the caproic acid concentration of strain GD1-1 reached 5.42 g/l, which was 1.40 times higher than the initial concentration. C. butyricum GD1-1 could be further used in caproic acid production, NXXB pit mud strengthening and maintenance, and artificial pit mud preparation.
Collapse
Affiliation(s)
- Min Li
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, Sichuan 644005, P.R. China
| | - Tao Li
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, Sichuan 644005, P.R. China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd., Yibin, Sichuan 644000, P.R. China
| | - Zongwei Qiao
- Wuliangye Yibin Co., Ltd., Yibin, Sichuan 644000, P.R. China
| | - Kaizheng Zhang
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, Sichuan 644005, P.R. China
| | - Huibo Luo
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, Sichuan 644005, P.R. China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin, Sichuan 644005, P.R. China
| | - Wei Zou
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, Sichuan 644005, P.R. China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin, Sichuan 644005, P.R. China
| |
Collapse
|
12
|
Zhu C, Cheng Y, Shi Q, Ge X, Yang Y, Huang Y. Metagenomic analyses reveal microbial communities and functional differences between Daqu from seven provinces. Food Res Int 2023; 172:113076. [PMID: 37689857 DOI: 10.1016/j.foodres.2023.113076] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/28/2023] [Accepted: 05/29/2023] [Indexed: 09/11/2023]
Abstract
Microbial communities perform the brewing function in Daqu. Macrogenomics and PICRUST II analyses revealed the differences in microbes and metabolic functions among Daqu from the seven Baijiu-producing provinces. Jiang-flavored Daqu (Guizhou, Shandong, and Hubei provinces) generally forms an aroma-producing functional microbiota with Kroppenstedtia, Bacillus, Thermoascus, Virgibacillus, and Thermomyces as the core, which promotes the metabolism of various amino acids and aroma compounds. Light-flavored Daqu (Shanxi Province) enriched the Saccharomycopsis, Saccharomyces, and lactic acid bacteria (LAB) microbiota through low-temperature fermentation. These microbes can synthesize alcohol and lactic acid but inhibit amino acid metabolism within the Light-flavored Daqu. Bifidobacterium and Saccharomycopsis were dominant in the Tao-flavored Daqu (Henan province). This unique microbial structure is beneficial for pyruvate fermentation to lactate. Research also found that Strong-flavored Daqu from Jiangsu and Sichuan provinces differed significantly. The microbial communities and metabolic pathways within Jiangsu Daqu were similar to those within Jiang-flavored Daqu, but Sichuan Daqu was dominated by Thermoascus, LAB, and Thermoactinomyces. In addition, Spearman correlation analysis indicated that Kroppenstedtia, Bacillus, and Thermomyces were not only positively related to flavor metabolism but also negatively correlated with Saccharomycopsis. This research will help establish a systematic understanding of the microbial community and functional characteristics in Daqu.
Collapse
Affiliation(s)
- Chutian Zhu
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, China
| | - Yuxin Cheng
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qili Shi
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiangyang Ge
- Yanghe Distillery Co., Ltd., Suqian, Jiangsu 223800, China
| | - Yong Yang
- Yanghe Distillery Co., Ltd., Suqian, Jiangsu 223800, China
| | - Yongguang Huang
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, China
| |
Collapse
|
13
|
Wu Y, Chen H, Sun Y, Huang H, Chen Y, Hong J, Liu X, Wei H, Tian W, Zhao D, Sun J, Huang M, Sun B. Integration of Chemometrics and Sensory Metabolomics to Validate Quality Factors of Aged Baijiu (Nianfen Baijiu) with Emphasis on Long-Chain Fatty Acid Ethyl Esters. Foods 2023; 12:3087. [PMID: 37628086 PMCID: PMC10453570 DOI: 10.3390/foods12163087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The storage process of Baijiu is an integral part of its production (the quality undergoes substantial changes during the aging process of Baijiu). As the storage time extends, the flavor compounds in Baijiu tend to undergo coordinated transformation, thereby enhancing the quality of Baijiu. Among them, long-chain fatty acid ethyl esters (LCFAEEs) were widely distributed in Baijiu and have been shown to have potential contributions to the quality of Baijiu. However, the current research on LCFAEEs in Baijiu predominantly focuses on the olfactory sensation aspect, while there is a lack of systematic investigation into their influence on taste and evaluation after drinking Baijiu during the aging process. In light of this, the present study investigates the distribution of LCFAEEs in Baijiu over different years. We have combined modern flavor sensory analysis with multivariate chemometrics to comprehensively and objectively explore the influence of LCFAEEs on Baijiu quality. The results demonstrate a significant positive correlation between the concentration of LCFAEEs and the fruity aroma (p < 0.05, r = 0.755) as well as the aged aroma (p < 0.05, r = 0.833) of Baijiu within a specific range; they can effectively reduce the off-flavors and spicy sensation of Baijiu. Furthermore, additional experiments utilizing a single variable suggest that LCFAEEs were crucial factors influencing the flavor of Baijiu, with Ethyl Palmitate (EP) being the most notable LCFAEE that merits further systematic investigation.
Collapse
Affiliation(s)
- Yashuai Wu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (Y.W.); (H.C.); (Y.S.); (H.H.); (Y.C.); (J.H.); (X.L.); (H.W.); (J.S.); (M.H.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Hao Chen
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (Y.W.); (H.C.); (Y.S.); (H.H.); (Y.C.); (J.H.); (X.L.); (H.W.); (J.S.); (M.H.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Yue Sun
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (Y.W.); (H.C.); (Y.S.); (H.H.); (Y.C.); (J.H.); (X.L.); (H.W.); (J.S.); (M.H.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - He Huang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (Y.W.); (H.C.); (Y.S.); (H.H.); (Y.C.); (J.H.); (X.L.); (H.W.); (J.S.); (M.H.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Yiyuan Chen
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (Y.W.); (H.C.); (Y.S.); (H.H.); (Y.C.); (J.H.); (X.L.); (H.W.); (J.S.); (M.H.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Jiaxin Hong
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (Y.W.); (H.C.); (Y.S.); (H.H.); (Y.C.); (J.H.); (X.L.); (H.W.); (J.S.); (M.H.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Department of Nutrition and Health, China Agriculture University, Beijing 100193, China
| | - Xinxin Liu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (Y.W.); (H.C.); (Y.S.); (H.H.); (Y.C.); (J.H.); (X.L.); (H.W.); (J.S.); (M.H.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Huayang Wei
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (Y.W.); (H.C.); (Y.S.); (H.H.); (Y.C.); (J.H.); (X.L.); (H.W.); (J.S.); (M.H.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Wenjing Tian
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China;
| | - Dongrui Zhao
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (Y.W.); (H.C.); (Y.S.); (H.H.); (Y.C.); (J.H.); (X.L.); (H.W.); (J.S.); (M.H.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Jinyuan Sun
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (Y.W.); (H.C.); (Y.S.); (H.H.); (Y.C.); (J.H.); (X.L.); (H.W.); (J.S.); (M.H.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Mingquan Huang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (Y.W.); (H.C.); (Y.S.); (H.H.); (Y.C.); (J.H.); (X.L.); (H.W.); (J.S.); (M.H.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (Y.W.); (H.C.); (Y.S.); (H.H.); (Y.C.); (J.H.); (X.L.); (H.W.); (J.S.); (M.H.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
14
|
Zhang G, Xiao P, Yuan M, Li Y, Xu Y, Li H, Sun J, Sun B. Roles of sulfur-containing compounds in fermented beverages with 2-furfurylthiol as a case example. Front Nutr 2023; 10:1196816. [PMID: 37457986 PMCID: PMC10348841 DOI: 10.3389/fnut.2023.1196816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/25/2023] [Indexed: 07/18/2023] Open
Abstract
Aroma is a critical component of the flavor and quality of beverages. Among the volatile chemicals responsible for fragrance perception, sulfur compounds are unique odorants due to their extremely low odor threshold. Although trace amounts of sulfur compounds can enhance the flavor profile of beverages, they can lead to off-odors. Sulfur compounds can be formed via Maillard reaction and microbial metabolism, imparting coffee aroma and altering the flavor of beverages. In order to increase the understanding of sulfur compounds in the field of food flavor, 2-furfurylthiol (FFT) was chosen as a representative to discuss the current status of their generation, sensory impact, enrichment, analytical methods, formation mechanisms, aroma deterioration, and aroma regulation. FFT is comprehensively reviewed, and the main beverages of interest are typically baijiu, beer, wine, and coffee. Challenges and recommendations for FFT are also discussed, including analytical methods and mechanisms of formation, interactions between FFT and other compounds, and the development of specific materials to extend the duration of aroma after release.
Collapse
Affiliation(s)
- Guihu Zhang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Peng Xiao
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Mengmeng Yuan
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Youming Li
- Inner Mongolia Taibus Banner Grassland Brewing Co., Ltd., Xilin Gol League, China
| | - Youqiang Xu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Hehe Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Jinyuan Sun
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Quality and Safety, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
15
|
Zhang G, Xiao P, Xu Y, Li H, Li H, Sun J, Sun B. Isolation and Characterization of Yeast with Benzenemethanethiol Synthesis Ability Isolated from Baijiu Daqu. Foods 2023; 12:2464. [PMID: 37444202 DOI: 10.3390/foods12132464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Baijiu, a prevalent alcoholic beverage, boasts over 2000 aroma compounds, with sulfur-containing compounds being the most influential in shaping its flavor. Benzenemethanethiol, a distinctive odorant in baijiu, is known to enhance the holistic flavor profile of baijiu. Despite its importance, there is very little literature on the biotransformation mechanism of benzenemethanethiol. Thus, extensive research efforts have been made to elucidate the formation mechanism of this compound in order to improve baijiu production. In this study, 12 yeast strains capable of generating benzenemethanethiol were isolated from baijiu daqu, and the Saccharomyces cerevisiae strain J14 was selected for further investigation. The fermentation conditions were optimized, and it was found that the optimal conditions for producing benzenemethanethiol were at 28 °C for 24 h with a 4% (v/v) inoculum of 3.025 g/L L-cysteine. This is the first time that yeast has been shown to produce benzenemethanethiol isolated from the baijiu fermentation system. These findings also suggest that benzenemethanethiol can be metabolized by yeast using L-cysteine and benzaldehyde as precursor substrates.
Collapse
Affiliation(s)
- Guihu Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Peng Xiao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Youqiang Xu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Honghua Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Hehe Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
16
|
Investigation on the interaction between 1,3-dimethyltrisulfide and aroma-active compounds in sesame-flavor baijiu by Feller Additive Model, Odor Activity Value and Partition Coefficient. Food Chem 2023; 410:135451. [PMID: 36652795 DOI: 10.1016/j.foodchem.2023.135451] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023]
Abstract
The interaction between 1,3-dimethyltrisulfide and aroma-active compounds in sesame-flavor baijiu was evaluated by Feller's additive model and Odor Activity Value Approach, and the reason for the interaction can promote the release of fruity and caramel aromas of ethyl caproate, ethyl was explored by the Partition Coefficient Approach. The interaction results indicated that 1,3-dimethyltrisulfide caprate and furan-2-ylmethanol. Others showed masking effect. The Partition Coefficient showed that the effect of 1,3-dimethyltrisulfide on the volatility of esters was one of the reasons for the interaction affecting the flavor perception, and the volatility of ethyl esters with longer carbon chains at high phase ratio (PRs) is more likely to be promoted. Besides, the prediction model was initially proposed: y = 2.0112 ln(x) + 0.1461, which indicated that esters with the olfactory threshold lower than 33.80 μg/L are more likely to have positive effects with 1,3-dimethyltrisulfide, the negative effect is more likely to occur conversely.
Collapse
|
17
|
Revelation for the Influence Mechanism of Long-Chain Fatty Acid Ethyl Esters on the Baijiu Quality by Multicomponent Chemometrics Combined with Modern Flavor Sensomics. Foods 2023; 12:foods12061267. [PMID: 36981194 PMCID: PMC10048143 DOI: 10.3390/foods12061267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/02/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Long-chain fatty acid ethyl ester (LCFAEEs) is colorless and has a weak wax and cream aroma. It can be used as an intermediate for the synthesis of emulsifiers, and stabilizers and be applied in the production of flavor essence. It is also an important trace component in Baijiu and is attributed to making a contribution to the quality of Baijiu, but its distribution in Baijiu has not been clear, and its influence mechanisms on Baijiu quality have not been systematically studied. Therefore, the distribution of LCFAEEs for Baijiu in different years (2014, 2015, 2018, and 2022), different grades (premium, excellent, and level 1; note: here Baijiu grade classification was based on Chinese standard (GB/T 10781) and enterprise classification standard), and different sun exposure times (0, 6, 12, 20, 30, and 50 days) was uncovered. Thus, in this study, the effect of LCFAEEs on the quality of Baijiu was comprehensively and objectively proven by combining modern flavor sensomics and multicomponent chemometrics. The results showed that with the increase in Baijiu storage time, the concentration of LCFAEEs increased significantly in Baijiu (4.38–196.95 mg/L, p < 0.05). The concentration of LCFAEEs in level 1 Baijiu was significantly higher than that in excellent and premium Baijiu (the concentration ranges of ET, EP, EO, E9, E912, and E91215 were: 0.27–2.31 mg/L, 0.75–47.41 mg/L, 0.93–1.80 mg/L, 0.98–12.87 mg/L, 1.01–27.08 mg/L, and 1.00–1.75 mg/L, respectively, p < 0.05). With the increase in sun exposure time, the concentration of LCFAEEs in the Baijiu first increased significantly and then decreased significantly (4.38–5.95 mg/L, p < 0.05). As the flavor sensomics showed, the concentrations of LCFAEEs in Baijiu bodies were significantly correlated with the Baijiu taste sense (inlet taste, aroma sensation in the mouth), as well as with the evaluation after drinking (maintaining taste) (p < 0.05, r > 0.7). Based on the above, LCFAEEs are critical factors for Baijiu flavor thus, it is essential to explore a suitable concentration of LCFAEEs in Baijiu to make Baijiu’s quality more ideal.
Collapse
|
18
|
Zeng X, Mo Z, Zheng J, Wei C, Dai Y, Yan Y, Qiu S. Effects of biofilm and co-culture with Bacillus velezensis on the synthesis of esters in the strong flavor Baijiu. Int J Food Microbiol 2023; 394:110166. [PMID: 36921483 DOI: 10.1016/j.ijfoodmicro.2023.110166] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/30/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023]
Abstract
Biofilm plays an important role in resisting the adverse environment, improving the taste and texture, and promoting the synthesis of flavor substances. However, to date, the findings on the effect of biofilm and dominating bacteria Bacillus on the ester synthesis in the Baijiu field have been largely lacked. Therefore, the objectives of the present study were to primarily isolate biofilm-producing microbes in the fermented grains, evaluate the stress tolerance capacity, and unveil the effect of biofilm and co-culture with Bacillus on the ester synthesis in the strong flavor Baijiu. Results indicated that after isolation and evaluation of stress-tolerance capacity, bacterial strain BG-5 and yeast strains YM-21 and YL-10 were demonstrated as mediate or strong biofilm-producing microbes and were identified as Bacillus velezensis, Saccharomycopsis fibuligera, and Zygosaccharomyces bailii, respectively. Solid phase microextraction/gas chromatography-mass spectrometer indicated that biofilm could enhance the diversity of esters while reduce the contents of ester. The scanning electron microscopy showed an inhibitory effect of B. velezensis on the growth of S. fibuligera, further restraining the production of esters. Taken together, both biofilm and B. velezensis influence the ester synthesis process. The present study is the first to reveal the biofilm-producing microorganisms in fermented grains and to preliminarily investigate the effect of biofilm on the ester synthesis in the Baijiu field.
Collapse
Affiliation(s)
- Xiangyong Zeng
- College of Liquor and Food Engineering, Guizhou University, Guiyang City 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biopharmacy, Guizhou University, Guiyang City 550025, China.
| | - Zhenni Mo
- College of Liquor and Food Engineering, Guizhou University, Guiyang City 550025, China; Department of Light Industry and Chemical Engineering, Guizhou Light Industry Technical College, Guiyang City 550025, China
| | - Jia Zheng
- Wuliangye Yibin Co Ltd, No.150 Minjiang West Road, Yibin City 644007, China
| | - Chaoyang Wei
- College of Liquor and Food Engineering, Guizhou University, Guiyang City 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biopharmacy, Guizhou University, Guiyang City 550025, China
| | - Yifeng Dai
- College of Liquor and Food Engineering, Guizhou University, Guiyang City 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biopharmacy, Guizhou University, Guiyang City 550025, China
| | - Yan Yan
- College of Liquor and Food Engineering, Guizhou University, Guiyang City 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biopharmacy, Guizhou University, Guiyang City 550025, China
| | - Shuyi Qiu
- College of Liquor and Food Engineering, Guizhou University, Guiyang City 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biopharmacy, Guizhou University, Guiyang City 550025, China
| |
Collapse
|
19
|
Zhu W, Qin L, Xu Y, Lu H, Wu Q, Li W, Zhang C, Li X. Three Molecular Modification Strategies to Improve the Thermostability of Xylanase XynA from Streptomyces rameus L2001. Foods 2023; 12:foods12040879. [PMID: 36832954 PMCID: PMC9957083 DOI: 10.3390/foods12040879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Glycoside hydrolase family 11 (GH11) xylanases are the preferred candidates for the production of functional oligosaccharides. However, the low thermostability of natural GH11 xylanases limits their industrial applications. In this study, we investigated the following three strategies to modify the thermostability of xylanase XynA from Streptomyces rameus L2001 mutation to reduce surface entropy, intramolecular disulfide bond construction, and molecular cyclization. Changes in the thermostability of XynA mutants were analyzed using molecular simulations. All mutants showed improved thermostability and catalytic efficiency compared with XynA, except for molecular cyclization. The residual activities of high-entropy amino acid-replacement mutants Q24A and K104A increased from 18.70% to more than 41.23% when kept at 65 °C for 30 min. The catalytic efficiencies of Q24A and K143A increased to 129.99 and 92.26 mL/s/mg, respectively, compared with XynA (62.97 mL/s/mg) when using beechwood xylan as the substrate. The mutant enzyme with disulfide bonds formed between Val3 and Thr30 increased the t1/260 °C by 13.33-fold and the catalytic efficiency by 1.80-fold compared with the wild-type XynA. The high thermostabilities and hydrolytic activities of XynA mutants will be useful for enzymatic production of functional xylo-oligosaccharides.
Collapse
Affiliation(s)
- Weijia Zhu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Liqin Qin
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Youqiang Xu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hongyun Lu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qiuhua Wu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Weiwei Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Chengnan Zhang
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xiuting Li
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Correspondence:
| |
Collapse
|
20
|
Xu Y, Wu M, Zhao D, Zheng J, Dai M, Li X, Li W, Zhang C, Sun B. Simulated Fermentation of Strong-Flavor Baijiu through Functional Microbial Combination to Realize the Stable Synthesis of Important Flavor Chemicals. Foods 2023; 12:foods12030644. [PMID: 36766173 PMCID: PMC9913964 DOI: 10.3390/foods12030644] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The solid-state fermentation of Baijiu is complicated by the co-fermentation of many microorganisms. The instability of the composition and abundance of the microorganisms in the fermentation process leads to fluctuations of product quality, which is one of the bottleneck problems faced by the Strong-flavor Baijiu industry. In this study, we established a combination of functional microorganisms for the stable fermentation of the main flavor compounds of Baijiu, including medium and long-chain fatty acid ethyl esters such as hexanoic acid, ethyl ester; butanoic acid, ethyl ester; octanoic acid, ethyl ester; acetic acid, ethyl ester; 9,12-octadecadienoic acid, ethyl ester; and decanoic acid, ethyl ester in the fermented grains. Our study investigated the effects of microbial combinations on the fermentation from three aspects: microbial composition, microbial interactions, and microbial association with flavor compounds. The results showed that the added functional microorganisms (Lactobacillus, Clostridium, Caproiciproducens, Saccharomyces, and Aspergillus) became the dominant species in the fermentation system and formed positive interactions with other microorganisms, while the negative interactions between microorganisms were significantly reduced in the fermentation systems that contained both Daqu and functional microorganisms. The redundancy analysis showed that the functional microorganisms (Lactobacillus, Saccharomyces, Clostridium, Cloacibacterium, Chaenothecopsis, Anaerosporobacter, and Sporolactobacillus) showed strong positive correlations with the main flavor compounds (hexanoic acid, ethyl ester; lactic acid, ethyl ester; butanoic acid, ethyl ester; acetic acid, ethyl ester; and octanoic acid, ethyl ester). These results indicated that it was feasible to produce Baijiu with a functional microbial combination, and that this could promote stable Baijiu production.
Collapse
Affiliation(s)
- Youqiang Xu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (Y.X.); (X.L.)
| | - Mengqin Wu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Dong Zhao
- Wuliangye Yibin Co., Ltd., Yibin 644000, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd., Yibin 644000, China
| | - Mengqi Dai
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 102401, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (Y.X.); (X.L.)
| | - Weiwei Li
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Chengnan Zhang
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 102401, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
21
|
Lai J, Huang H, Lin M, Xu Y, Li X, Sun B. Enzyme catalyzes ester bond synthesis and hydrolysis: The key step for sustainable usage of plastics. Front Microbiol 2023; 13:1113705. [PMID: 36713200 PMCID: PMC9878459 DOI: 10.3389/fmicb.2022.1113705] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Petro-plastic wastes cause serious environmental contamination that require effective solutions. Developing alternatives to petro-plastics and exploring feasible degrading methods are two solving routes. Bio-plastics like polyhydroxyalkanoates (PHAs), polylactic acid (PLA), polycaprolactone (PCL), poly (butylene succinate) (PBS), poly (ethylene furanoate) s (PEFs) and poly (ethylene succinate) (PES) have emerged as promising alternatives. Meanwhile, biodegradation plays important roles in recycling plastics (e.g., bio-plastics PHAs, PLA, PCL, PBS, PEFs and PES) and petro-plastics poly (ethylene terephthalate) (PET) and plasticizers in plastics (e.g., phthalate esters, PAEs). All these bio- and petro-materials show structure similarity by connecting monomers through ester bond. Thus, this review focused on bio-plastics and summarized the sequences and structures of the microbial enzymes catalyzing ester-bond synthesis. Most of these synthetic enzymes belonged to α/β-hydrolases with conserved serine catalytic active site and catalyzed the polymerization of monomers by forming ester bond. For enzymatic plastic degradation, enzymes about PHAs, PBS, PCL, PEFs, PES and PET were discussed, and most of the enzymes also belonged to the α/β hydrolases with a catalytic active residue serine, and nucleophilically attacked the ester bond of substrate to generate the cleavage of plastic backbone. Enzymes hydrolysis of the representative plasticizer PAEs were divided into three types (I, II, and III). Type I enzymes hydrolyzed only one ester-bond of PAEs, type II enzymes catalyzed the ester-bond of mono-ester phthalates, and type III enzymes hydrolyzed di-ester bonds of PAEs. Divergences of catalytic mechanisms among these enzymes were still unclear. This review provided references for producing bio-plastics, and degrading or recycling of bio- and petro-plastics from an enzymatic point of view.
Collapse
Affiliation(s)
- Jinghui Lai
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
| | - Huiqin Huang
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
| | - Mengwei Lin
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
| | - Youqiang Xu
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
22
|
Zhao J, Xu Y, Lu H, Zhao D, Zheng J, Lin M, Liang X, Ding Z, Dong W, Yang M, Li W, Zhang C, Sun B, Li X. Molecular mechanism of LIP05 derived from Monascus purpureus YJX-8 for synthesizing fatty acid ethyl esters under aqueous phase. Front Microbiol 2023; 13:1107104. [PMID: 36713181 PMCID: PMC9877431 DOI: 10.3389/fmicb.2022.1107104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Fatty acid ethyl esters are important flavor chemicals in strong-flavor Baijiu. Monascus purpureus YJX-8 is recognized as an important microorganism for ester synthesis in the fermentation process. Enzyme LIP05 from YJX-8 can efficiently catalyze the synthesis of fatty acid ethyl esters under aqueous phase, but the key catalytic sites affecting esterification were unclear. The present work combined homology modeling, molecular dynamics simulation, molecular docking and site-directed mutation to analyze the catalytic mechanism of LIP05. Protein structure modeling indicated LIP05 belonged to α/β fold hydrolase, contained a lid domain and a core catalytic pocket with conserved catalytic triad Ser150-His215-Asp202, and the oxyanion hole composed of Gly73 and Thr74. Ile30 and Leu37 of the lid domain were found to affect substrate specificity. The π-bond stacking between Tyr116 and Tyr149 played an important role in stabilizing the catalytic active center of LIP05. Tyr116 and Ile204 determined the substrate spectrum by composing the substrate-entrance channel. Residues Leu83, Ile204, Ile211 and Leu216 were involved in forming the hydrophobic substrate-binding pocket through steric hindrance and hydrophobic interaction. The catalytic mechanism for esterification in aqueous phase of LIP05 was proposed and provided a reference for clarifying the synthesis of fatty acid ethyl esters during the fermentation process of strong-flavor Baijiu.
Collapse
Affiliation(s)
- Jingrong Zhao
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Youqiang Xu
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Hongyun Lu
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Dong Zhao
- Wuliangye Yibin Co., Ltd., Yibin, Sichuan, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd., Yibin, Sichuan, China
| | - Mengwei Lin
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xin Liang
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Ze Ding
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Wenqi Dong
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Maochen Yang
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Weiwei Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Chengnan Zhang
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
23
|
Pang Z, Li W, Hao J, Xu Y, Du B, Zhang C, Wang K, Zhu H, Wang H, Li X, Guo C. Correlational Analysis of the Physicochemical Indexes, Volatile Flavor Components, and Microbial Communities of High-Temperature Daqu in the Northern Region of China. Foods 2023; 12:326. [PMID: 36673417 PMCID: PMC9857448 DOI: 10.3390/foods12020326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/10/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Daqu is a microbial-rich baijiu fermentation starter. The high-temperature Daqu plays an essential role in the manufacturing of sauce-flavored baijiu. However, few studies have focused on three kinds of high-temperature Daqu (white, yellow, and black Daqu) in northern China. In this study, the physicochemical indexes, volatile flavor compounds, and microbial characteristics of the three different colors of high-temperature Daqu in northern China were comparatively analyzed to reveal their potential functions. White Daqu (WQ) exhibited the highest liquefying power and starch, and black Daqu (BQ) showed the highest saccharifying and esterifying powers. A total of 96 volatile components were identified in the three types of Daqu, and the contents of the volatile components of yellow Daqu (YQ) were the highest. The microbial community structure analysis showed that Bacillus and Byssochlamys were dominant in BQ, Kroppenstedtia and Thermoascus were dominant in WQ, and Virgibacillus and Thermomyces dominated the YQ. The RDA analysis revealed the correlation between the dominant microorganisms and different physicochemical indexes. The Spearman correlation analysis indicated that Oceanobacillus, Saccharopolyspora, Staphylococcus, Pseudogracilibacillus, Byssochlamys, and Thermomyces showed positive correlations with part of the majority of the key volatile flavor compounds. This work provides a scientific basis for the actual production of different colors of high-temperature Daqu in the northern region of China for sauce-flavored baijiu.
Collapse
Affiliation(s)
- Zemin Pang
- Key Laboratory of Molecular and Cytogenetic, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Weiwei Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Hao
- Key Laboratory of Molecular and Cytogenetic, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Youqiang Xu
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Binghao Du
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Chengnan Zhang
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Kun Wang
- Beijing Huadu Wine Food Limited Liability Company, Beijing 102212, China
| | - Hua Zhu
- Beijing Huadu Wine Food Limited Liability Company, Beijing 102212, China
| | - Hongan Wang
- Beijing Huadu Wine Food Limited Liability Company, Beijing 102212, China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Changhong Guo
- Key Laboratory of Molecular and Cytogenetic, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
24
|
Xu Y, Wu M, Niu J, Lin M, Zhu H, Wang K, Li X, Sun B. Characteristics and Correlation of the Microbial Communities and Flavor Compounds during the First Three Rounds of Fermentation in Chinese Sauce-Flavor Baijiu. Foods 2023; 12:207. [PMID: 36613423 PMCID: PMC9818360 DOI: 10.3390/foods12010207] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Sauce-flavor Baijiu is representative of solid-state fermented Baijiu. It is significant to deeply reveal the dynamic changes of microorganisms in the manufacturing process and their impact on the formation of flavor chemicals correlated with the quality of Baijiu. Sauce-flavor Baijiu manufacturing process can be divided into seven rounds, from which seven kinds of base Baijius are produced. The quality of base Baijiu in the third round is significantly better than that in the first and second rounds, but the mystery behind the phenomenon has not yet been revealed. Based on high-throughput sequencing and flavor analysis of fermented grains, and correlation analysis, the concentrations of flavor chemicals in the third round of fermented grains were enhanced, including esters hexanoic acid, ethyl ester; octanoic acid, ethyl ester; decanoic acid, ethyl ester; dodecanoic acid, ethyl ester; phenylacetic acid, ethyl ester; 3-(methylthio)-propionic acid ethyl ester; acetic acid, phenylethyl ester; hexanoic acid, butyl ester, and other flavor chemicals closely related to the flavor of sauce-flavor Baijiu, such as tetramethylpyrazine. The changes in flavor chemicals should be an important reason for the quality improvement of the third round of base Baijiu. Correlation analysis showed that ester synthesis was promoted by the bacteria genus Lactobacillus and many low abundances of fungal genera, and these low abundances of fungal genera also had important contributions to the production of tetramethylpyrazine. Meanwhile, the degrading metabolic pathway of tetramethylpyrazine was investigated, and the possible microorganisms were correlated. These results clarified the base Baijiu quality improvement of the third round and helped to provide a theoretical basis for improving base Baijiu quality.
Collapse
Affiliation(s)
- Youqiang Xu
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Mengqin Wu
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Jialiang Niu
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Mengwei Lin
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Hua Zhu
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Beijing Huadu Wine Food Limited Liability Company, Beijing 102212, China
| | - Kun Wang
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Beijing Huadu Wine Food Limited Liability Company, Beijing 102212, China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
25
|
Revealing the Changes in Compounds When Producing Strong-Flavor Daqu by Statistical and Instrumental Analysis. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Daqu is not only a crucial starter in the production of baijiu, but it is also an important source of flavoring substances, so maintaining a stable quality is an important part of improving the quality of baijiu. Nonetheless, since the production of daqu is still a natural fermentation process, which is influenced by seasonal factors, the rapid testing of daqu quality is a problem that must be solved. In this study, headspace solid-phase microextraction technology (HS-SPME) was used to explore the volatile components in daqu, and a total of 115 volatile components were extracted. By constructing an untargeted statistical model, the variation in volatile compounds in dissimilar production processes of daqu was studied, and the differences between different maturation stages and the correlations between volatile compounds were analyzed. Subsequently, six compounds, including ethyl acetate, ethanol, phenylethanol, (R,R)-2,3-butanediol, ethyl caproate, and 2,3-butanediol, were further screened out by partial least squares discrimination analysis (PLS-DA), and the symbolic combination of daqu’s maturity was speedily judged in accordance with the changes in marker compound concentrations to lay the foundation for the mechanization of baijiu production.
Collapse
|
26
|
Liu X, Luo H, Yu D, Tan J, Yuan J, Li H. Synthetic biology promotes the capture of CO2 to produce fatty acid derivatives in microbial cell factories. BIORESOUR BIOPROCESS 2022; 9:124. [PMID: 38647643 PMCID: PMC10992411 DOI: 10.1186/s40643-022-00615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/27/2022] [Indexed: 12/07/2022] Open
Abstract
Environmental problems such as greenhouse effect, the consumption of fossil energy, and the increase of human demand for energy are becoming more and more serious, which force researcher to turn their attention to the reduction of CO2 and the development of renewable energy. Unsafety, easy to lead to secondary environmental pollution, cost inefficiency, and other problems limit the development of conventional CO2 capture technology. In recent years, many microorganisms have attracted much attention to capture CO2 and synthesize valuable products directly. Fatty acid derivatives (e.g., fatty acid esters, fatty alcohols, and aliphatic hydrocarbons), which can be used as a kind of environmentally friendly and renewable biofuels, are sustainable substitutes for fossil energy. In this review, conventional CO2 capture techniques pathways, microbial CO2 concentration mechanisms and fixation pathways were introduced. Then, the metabolic pathway and progress of direct production of fatty acid derivatives from CO2 in microbial cell factories were discussed. The synthetic biology means used to design engineering microorganisms and optimize their metabolic pathways were depicted, with final discussion on the potential of optoelectronic-microbial integrated capture and production systems.
Collapse
Affiliation(s)
- Xiaofang Liu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, Guizhou, China.
| | - Hangyu Luo
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, Guizhou, China
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Dayong Yu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, Guizhou, China
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Jinyu Tan
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Junfa Yuan
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
27
|
Pillay S, Calderón-Franco D, Urhan A, Abeel T. Metagenomic-based surveillance systems for antibiotic resistance in non-clinical settings. Front Microbiol 2022; 13:1066995. [PMID: 36532424 PMCID: PMC9755710 DOI: 10.3389/fmicb.2022.1066995] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 08/12/2023] Open
Abstract
The success of antibiotics as a therapeutic agent has led to their ineffectiveness. The continuous use and misuse in clinical and non-clinical areas have led to the emergence and spread of antibiotic-resistant bacteria and its genetic determinants. This is a multi-dimensional problem that has now become a global health crisis. Antibiotic resistance research has primarily focused on the clinical healthcare sectors while overlooking the non-clinical sectors. The increasing antibiotic usage in the environment - including animals, plants, soil, and water - are drivers of antibiotic resistance and function as a transmission route for antibiotic resistant pathogens and is a source for resistance genes. These natural compartments are interconnected with each other and humans, allowing the spread of antibiotic resistance via horizontal gene transfer between commensal and pathogenic bacteria. Identifying and understanding genetic exchange within and between natural compartments can provide insight into the transmission, dissemination, and emergence mechanisms. The development of high-throughput DNA sequencing technologies has made antibiotic resistance research more accessible and feasible. In particular, the combination of metagenomics and powerful bioinformatic tools and platforms have facilitated the identification of microbial communities and has allowed access to genomic data by bypassing the need for isolating and culturing microorganisms. This review aimed to reflect on the different sequencing techniques, metagenomic approaches, and bioinformatics tools and pipelines with their respective advantages and limitations for antibiotic resistance research. These approaches can provide insight into resistance mechanisms, the microbial population, emerging pathogens, resistance genes, and their dissemination. This information can influence policies, develop preventative measures and alleviate the burden caused by antibiotic resistance.
Collapse
Affiliation(s)
- Stephanie Pillay
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
| | | | - Aysun Urhan
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
28
|
Xu Y, Wu M, Niu J, Huang H, Nie Z, Fu Z, Zhang C, Zhao Z, Lu H, Li X, Sun B. Clostridium btbubcensis BJN0001, a potentially new species isolated from the cellar mud of Chinese strong-flavor baijiu, produces ethanol, acetic acid and butyric acid from glucose. 3 Biotech 2022; 12:203. [PMID: 35935542 PMCID: PMC9346016 DOI: 10.1007/s13205-022-03271-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/20/2022] [Indexed: 11/01/2022] Open
Abstract
A novel strain, designated BJN0001, was isolated from the cellar mud of Chinese strong-flavor baijiu. The complete genome of strain BJN0001 was 2,688,791 bp and annotated with 2610 genes. Whole-genome similarity metrics such as average nucleotide identity (ANI) of BJN0001 with reference genomes reveals clear species boundaries of < 95% ANI value for species. The DNA-DNA hybridization (DDH) values of BJN0001 with the type species were all lower than 70% DDH value for species. Based on these results, the strain BJN0001 was considered a potentially new species of the genus Clostridium. Meanwhile, the fermentation characteristics indicated that the strain had the capability to convert glucose to ethanol, acetic acid and butyric acid, which could provide basic data for revealing its function in baijiu fermentation. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03271-7.
Collapse
Affiliation(s)
- Youqiang Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048 China
| | - Mengqin Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | - Jialiang Niu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | - Huiqin Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | - Zheng Nie
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | - Zhilei Fu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | | | - Zhigang Zhao
- Chengde Qianlongzui Distillery Company, Hebei, 067400 China
| | - Hongyun Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048 China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048 China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048 China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048 China
| |
Collapse
|
29
|
Tu W, Cao X, Cheng J, Li L, Zhang T, Wu Q, Xiang P, Shen C, Li Q. Chinese Baijiu: The Perfect Works of Microorganisms. Front Microbiol 2022; 13:919044. [PMID: 35783408 PMCID: PMC9245514 DOI: 10.3389/fmicb.2022.919044] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
Chinese Baijiu is one of the famous distilled liquor series with unique flavors in the world. Under the open environment, Chinese Baijiu was produced by two solid-state fermentation processes: jiuqu making and baijiu making. Chinese Baijiu can be divided into different types according to the production area, production process, starter type, and product flavor. Chinese Baijiu contains rich flavor components, such as esters and organic acids. The formation of these flavor substances is inseparable from the metabolism and interaction of different microorganisms, and thus, microorganisms play a leading role in the fermentation process of Chinese Baijiu. Bacteria, yeasts, and molds are the microorganisms involved in the brewing process of Chinese Baijiu, and they originate from various sources, such as the production environment, production workers, and jiuqu. This article reviews the typical flavor substances of different types of Chinese Baijiu, the types of microorganisms involved in the brewing process, and their functions. Methods that use microbial technology to enhance the flavor of baijiu, and for detecting flavor substances in baijiu were also introduced. This review systematically summarizes the role and application of Chinese Baijiu flavor components and microorganisms in baijiu brewing and provides data support for understanding Chinese Baijiu and further improving its quality.
Collapse
Affiliation(s)
- Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaonian Cao
- Luzhou Laojiao Co. Ltd., Luzhou, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Jie Cheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Caihong Shen
- Luzhou Laojiao Co. Ltd., Luzhou, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou, China
| |
Collapse
|