1
|
Sun M, Huang H, Tang H, Chen J, Chen W, Yang D. Effects of simulated digestion and prebiotics properties of polysaccharides extracted from Imperatae Rhizoma based on different pilot processes. Front Microbiol 2025; 16:1544261. [PMID: 40124890 PMCID: PMC11925942 DOI: 10.3389/fmicb.2025.1544261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
Recent studies have highlighted the prebiotic potential of natural plant polysaccharides, demonstrating their role in promoting beneficial gut microbiota and improving health. However, research on the digestive properties and prebiotic activities of Imperatae Rhizoma Polysaccharides (IRPs) remains limited. This study investigated fresh Imperatae Rhizoma as the research object. After processing, dry Imperatae Rhizoma and carbonized Imperatae Rhizoma were prepared. Three polysaccharides from the fresh, dry, and carbonized Imperatae Rhizoma were extracted with traditional hot water. And another polysaccharide was obtained by cold water extraction from fresh Imperatae Rhizoma. Total four IRPs were extracted and named: IRPs-F, IRPs-D, IRPs-C, and IRPs-J. This study evaluated the prebiotic activity of four polysaccharides derived from the roots of thatch, demonstrating their resistance to digestion, their ability to promote probiotic growth, and their enhancement of short-chain fatty acid (SCFA) production. The final results show that four IRPs exhibit strong resistance to digestion and IRPs-F ability to promote the growth of beneficial probiotics, making it a promising candidate for functional foods aimed at improving intestinal health, immune regulation, and metabolic benefits. This research is highly relevant to food microbiology and holds significant potential for application in the functional food and gut health sectors.
Collapse
Affiliation(s)
- Mengge Sun
- College of Life Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Haotian Huang
- College of Life Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Haibao Tang
- College of Life Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Jiajie Chen
- College of Life Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Wei Chen
- College of Life Science, Zhuhai College of Science and Technology, Zhuhai, China
| | - Dongsheng Yang
- College of Life Science, Zhuhai College of Science and Technology, Zhuhai, China
| |
Collapse
|
2
|
Gao S, Wang W, Li J, Wang Y, Shan Y, Tan H. Unveiling polysaccharides of Houttuynia cordata Thunb.: Extraction, purification, structure, bioactivities, and structure-activity relationships. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156436. [PMID: 39899978 DOI: 10.1016/j.phymed.2025.156436] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 02/05/2025]
Abstract
BACKGROUND Houttuynia cordata Thunb. is a plant valued for both its culinary and medicinal properties, utilized in the prevention and treatment of various ailments. Houttuynia cordata Thunb. polysaccharides (HCP) exhibit a range of biological activities, including antioxidant, immune modulation, anti-inflammatory, antiviral, maintenance of gut homeostasis, and antibacterial effects, rendering them significant for research in ethnopharmacology. PURPOSE This review consolidates recent advancements in the extraction, isolation, purification, structural characteristics, and biological activities of Houttuynia cordata Thunb. polysaccharides, while exploring the structure-activity relationships of HCP and the prospects for future research, thereby providing valuable insights for its drug development. METHODS Relevant literature regarding the extraction, isolation, purification, structural analysis, and biological activities of Houttuynia cordata Thunb. polysaccharides was sourced from databases such as PubMed, ScienceDirect, Web of Science, and CNKI. RESULTS Houttuynia cordata Thunb. is a perennial herbaceous plant that thrives in shady, humid environments and exhibits a semi-prostrate growth form. As a traditional herb used for heat-clearing and detoxification, it is effective against various conditions, including cholera, dysentery, and hemorrhoids. Houttuynia cordata Thunb. polysaccharides are key active components that can be extracted through various methods, including water extraction, enzymatic extraction, ultrasonic-assisted extraction, acid extraction, and alkali extraction. Structural analyses of the extracted and purified polysaccharides were conducted, focusing on their monosaccharide composition, molecular weight, and glycosidic bond structure. Additionally, pharmacological investigations reveal that Houttuynia cordata Thunb. polysaccharides possess a variety of biological activities, including antioxidant, immune modulation, antiviral, anti-inflammatory, maintenance of gut homeostasis, and antibacterial effects. CONCLUSIONS Research on HCP has established a solid foundation regarding its monosaccharide composition, molecular weight, and glycosidic linkages, with substantial documentation of its biological activities, including antioxidant, immune-regulating, and antiviral properties. However, investigations into the structural modification of HCP and the correlation between its structure and biological activity remain relatively underexplored. Additionally, the extraction yield of HCP is significantly affected by the choice of extraction and purification methods, highlighting the necessity for further optimization of extraction protocols.
Collapse
Affiliation(s)
- Shiyong Gao
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin 150076, Heilongjiang, China
| | - Weiya Wang
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin 150076, Heilongjiang, China
| | - Jianwen Li
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin 150076, Heilongjiang, China
| | - Yue Wang
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin 150076, Heilongjiang, China
| | - Yanmin Shan
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin 150076, Heilongjiang, China
| | - Huixin Tan
- Department of Pharmacy, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
3
|
Ma X, Wu Y, Gao P, Zheng Q, Lu Y, Yuan F, Jing W. Optimization of the Deproteinization Process via Response Surface Methodology, Preliminary Characterization, and the Determination of the Antioxidant Activities of Polysaccharides from Vitis vinifera L. SuoSuo. Molecules 2024; 29:4734. [PMID: 39407662 PMCID: PMC11478254 DOI: 10.3390/molecules29194734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
In this study, the response surface method (RSM) was used to optimize the deproteinization process of polysaccharides from Vitis vinifera L. SuoSuo (VTP). The antioxidant capacities of polysaccharides before and after deproteinization were evaluated. The structure of deproteinized VTP (DVTP), which has relatively strong antioxidant activity, was characterized, and the protective effect of DVTP on H2O2-induced HT22 cell damage was evaluated. The results of the RSM experiment revealed that the ideal parameters for deproteinization included a chloroform/n-butanol ratio (v/v) of 4.6:1, a polysaccharide/Sevage reagent (v/v) ratio of 2:1, a shaking time of 25 min, and five rounds of deproteinization. Preliminary characterization revealed that the DVTP was an acidic heteropolysaccharide composed of seven monosaccharides, among which the molar ratio of galacturonic acid was 40.65. FT-IR and the determination of uronic acid content revealed that DVTP contained abundant uronic acid and that the content was greater than that of VTP. In vitro, the antioxidant activity assay revealed that the hydroxyl radical scavenging capacity and total antioxidant capacity of DVTP were greater than those of VTP. In the range of 0.6~0.8 mg/mL, the DPPH scavenging capacities of VTP and DVTP were greater than that of vitamin C. In addition, cell viability was measured via a CCK-8 assay, which revealed that DVTP had a strong defense effect on H2O2-induced damage to HT22 cells. These findings suggest that DVTP has high antioxidant activity and could be used as a natural antioxidant in functional foods and medicines.
Collapse
Affiliation(s)
- Xinnian Ma
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China; (X.M.); (Y.W.); (P.G.)
| | - Yan Wu
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China; (X.M.); (Y.W.); (P.G.)
| | - Pei Gao
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China; (X.M.); (Y.W.); (P.G.)
| | - Qingsong Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Yibo Lu
- School of Public Health, Xinjiang Medical University, Urumqi 830017, China;
| | - Fang Yuan
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China; (X.M.); (Y.W.); (P.G.)
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi 830017, China
| | - Weixin Jing
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China; (X.M.); (Y.W.); (P.G.)
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi 830017, China
| |
Collapse
|
4
|
Wu Q, Wang X, Hao S, Wu Y, Zhang W, Chen L, Yan C, Lu Y, Chen Y, Ding Z. Synergetic effects and inhibition mechanisms of the polysaccharide-selenium nanoparticle complex in human hepatocarcinoma cell proliferation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5124-5138. [PMID: 38284440 DOI: 10.1002/jsfa.13335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/01/2023] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Active components from natural fungal products have shown promising potential as anti-tumor therapeutic agents. In the search for anti-tumor agents, research to overcome the drawbacks of high molecular weight and low bioavailability of pure polysaccharides, polysaccharide-conjugated selenium nanoparticles (SeNPs) has attracted much attention. RESULTS A novel polysaccharide-selenium nanoparticle complex was produced, in which SeNPs were decorated with polysaccharide obtained from fermented mycelia broth of Lactarius deliciosus (FLDP). Transmission electron microscope, dynamic light scattering, and X-ray photoelectron spectroscopy were utilized to characterize the FLDP-SeNPs; and human hepatocarcinoma cell line (HepG2) was used to assess growth inhibition efficacy. The FLDP-SeNPs that were prepared had a spherical shape with the smallest mean diameter of 32 nm. The FLDP-SeNPs showed satisfactory dispersibility and stability after combination, demonstrating that a reliable consolidated structure had formed. The results revealed that FLDP-SeNPs had notable growth inhibition effects on HepG2 cells. They reduced the membrane potential of mitochondria significantly, increased the generation of reactive oxygen species, enhanced levels of both Caspase-3 and Caspase-9, and led to the nucleus in a wrinkled form. CONCLUSION The FLDP-SeNPs could exert a synergetic toxicity reduction and inhibition enhancement effect on HepG2 cells by inducing early apoptosis, through mitochondria-mediated cytochrome C-Caspases and reactive oxygen species-induced DNA damage pathways. These results indicate that FLDP-SeNP treatment of HepG2 cells induced early apoptosis with synergetic efficacy, showing that FLDP-SeNPs can be useful as natural anti-tumor agents. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qingxi Wu
- School of Life Sciences, Anhui University, Hefei, PR China
- Key Laboratory of Eco-engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, PR China
| | - Xiaohui Wang
- School of Life Sciences, Anhui University, Hefei, PR China
| | - Siwei Hao
- School of Life Sciences, Anhui University, Hefei, PR China
| | - Yingchao Wu
- School of Life Sciences, Anhui University, Hefei, PR China
| | - Wenna Zhang
- School of Life Sciences, Anhui University, Hefei, PR China
- Key Laboratory of Eco-engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, PR China
| | - Lei Chen
- School of Life Sciences, Anhui University, Hefei, PR China
- Key Laboratory of Eco-engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, PR China
| | - Chao Yan
- School of Life Sciences, Anhui University, Hefei, PR China
- Key Laboratory of Eco-engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, PR China
| | - Yongming Lu
- School of Life Sciences, Anhui University, Hefei, PR China
- Key Laboratory of Eco-engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, PR China
| | - Yan Chen
- School of Life Sciences, Anhui University, Hefei, PR China
- Key Laboratory of Eco-engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, PR China
| | - Zhifeng Ding
- Department of Chemistry, The University of Western Ontario, London, Canada
| |
Collapse
|
5
|
Li M, Tang H, Hu H, Liu X, Xue D, Yu X, Zhang J, Chen H, Chen J, Wang C, Gong C. Production of acetic acid from wheat bran by catalysis of an acetoxylan esterase. BIORESOURCE TECHNOLOGY 2024; 396:130443. [PMID: 38354962 DOI: 10.1016/j.biortech.2024.130443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
In this study, a gene encoding for acetylxylan esterase was cloned and expressed in E. coli. A single uniform band with molecular weight of 31.2 kDa was observed in SDS-PAGE electrophoresis. Served as the substrate, p-nitrophenol butyrate was employed to detect the recombinant enzyme activity. It exhibited activity at a wide temperature range (30-100 °C) and pH (5.0-9.0) with the optimal temperature of 70 °C and pH 8.0. Acetylxylan esterase showed two substrates' specificities with the highest Vmax of 177.2 U/mg and Km of 20.98 mM against p-nitrophenol butyrate. Meanwhile, the Vmax of p-nitrophenol acetate was 137.0 U/mg and Km 12.16 mM. The acetic acid yield of 0.39 g/g was obtained (70 °C and pH 8.0) from wheat bran pretreated using amylase and papain. This study showed the highest yield up to date and developed a promising strategy for acetic acid production using wheat bran.
Collapse
Affiliation(s)
- Mei Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiaoji Liu
- CECEP (Feixi) WTE CO., LTD., Hefei 230001, PR China
| | - Dongsheng Xue
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Xun Yu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Jiaqi Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Hao Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Jia Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Chongju Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Chunjie Gong
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China.
| |
Collapse
|
6
|
Yang X, Yu A, Hu W, Zhang Z, Ruan Y, Kuang H, Wang M. Extraction, Purification, Structural Characteristics, Health Benefits, and Application of the Polysaccharides from Lonicera japonica Thunb.: A Review. Molecules 2023; 28:4828. [PMID: 37375383 DOI: 10.3390/molecules28124828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Lonicera japonica Thunb. is a widely distributed plant with ornamental, economic, edible, and medicinal values. L. japonica is a phytoantibiotic with broad-spectrum antibacterial activity and a potent therapeutic effect on various infectious diseases. The anti-diabetic, anti-Alzheimer's disease, anti-depression, antioxidative, immunoregulatory, anti-tumor, anti-inflammatory, anti-allergic, anti-gout, and anti-alcohol-addiction effects of L. japonica can also be explained by bioactive polysaccharides isolated from this plant. Several researchers have determined the molecular weight, chemical structure, and monosaccharide composition and ratio of L. japonica polysaccharides by water extraction and alcohol precipitation, enzyme-assisted extraction (EAE) and chromatography. This article searched in the Chinese Pharmacopoeia, Flora of China, Web of Science, PubMed, and CNKI databases within the last 12 years, using "Lonicera. japonica polysaccharides", "Lonicera. japonica Thunb. polysaccharides", and "Honeysuckle polysaccharides" as the key word, systematically reviewed the extraction and purification methods, structural characteristics, structure-activity relationship, and health benefits of L. japonica polysaccharides to provide insights for future studies. Further, we elaborated on the potential applications of L. japonica polysaccharides in the food, medicine, and daily chemical industry, such as using L. japonica as raw material to make lozenges, soy sauce and toothpaste, etc. This review will be a useful reference for the further optimization of functional products developed from L. japonica polysaccharides.
Collapse
Affiliation(s)
- Xinpeng Yang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Aiqi Yu
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Wenjing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Zhaojiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Ye Ruan
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| |
Collapse
|