1
|
Li R, Guo X, Qi Y, Wang Y, Wang J, Zhang P, Cheng S, He W, Zhao T, Li Y, Li L, Ji J, He A, Ai Z. Soil Amendments and Slow-Release Urea Improved Growth, Physiological Characteristics, and Yield of Salt-Tolerant Rice Under Salt Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2025; 14:543. [PMID: 40006802 PMCID: PMC11859376 DOI: 10.3390/plants14040543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
The present study aimed to investigate the effects of different soil amendments coupled with nitrogen fertilizer on the morpho-physiological characteristics and yield of salt-tolerant rice under saline conditions. The soil amendments, i.e., S1: zeolite amendment, S2: coconut coir amendment, S3: humic acid amendment, and S0: no amendment, and fertilizer treatments, i.e., N1: urea, N2: slow-release urea, and N0: no N fertilizer, were kept in main plots and sub-plots, respectively, in a split-plot design. The salt-tolerant variety 'Shuangliangyou 138' was exposed to 0.3% salt irrigation water. The results showed that during the entire growth period, compared to S0, the S1 and S3 treatments increased the SPAD values by an average of 6.3%and 5.5%, respectively, the leaf area index by an average of 24.5% and 19.8%, the canopy interception rate by an average of 11.5% and 4.1%, and the aboveground biomass by an average of 36.8% and 13.9%, respectively. Moreover, under S1 and S3 conditions, the tiller number per square meter, leaf water potential, leaf water content, and chlorophyll contents were also improved under the slow-release urea than urea. Moreover, slow-release urea promoted root vitality and nutrient absorption as well as enhanced the activity of antioxidant and nitrogen metabolism enzymes than urea under the S1 and S3 conditions. In sum, the rational application of soil amendments and slow-release urea could improve the rice productivity on saline-alkali land.
Collapse
Affiliation(s)
- Rongyi Li
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.L.); (Y.Q.); (Y.W.); (J.W.); (P.Z.); (S.C.); (W.H.); (T.Z.); (Y.L.); (L.L.); (J.J.)
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
| | - Xiayu Guo
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
- Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Yucheng Qi
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.L.); (Y.Q.); (Y.W.); (J.W.); (P.Z.); (S.C.); (W.H.); (T.Z.); (Y.L.); (L.L.); (J.J.)
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
| | - Yuyuan Wang
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.L.); (Y.Q.); (Y.W.); (J.W.); (P.Z.); (S.C.); (W.H.); (T.Z.); (Y.L.); (L.L.); (J.J.)
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
| | - Jianbo Wang
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.L.); (Y.Q.); (Y.W.); (J.W.); (P.Z.); (S.C.); (W.H.); (T.Z.); (Y.L.); (L.L.); (J.J.)
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
| | - Pengfei Zhang
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.L.); (Y.Q.); (Y.W.); (J.W.); (P.Z.); (S.C.); (W.H.); (T.Z.); (Y.L.); (L.L.); (J.J.)
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
| | - Shenghai Cheng
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.L.); (Y.Q.); (Y.W.); (J.W.); (P.Z.); (S.C.); (W.H.); (T.Z.); (Y.L.); (L.L.); (J.J.)
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
| | - Wenli He
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.L.); (Y.Q.); (Y.W.); (J.W.); (P.Z.); (S.C.); (W.H.); (T.Z.); (Y.L.); (L.L.); (J.J.)
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
| | - Tingcheng Zhao
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.L.); (Y.Q.); (Y.W.); (J.W.); (P.Z.); (S.C.); (W.H.); (T.Z.); (Y.L.); (L.L.); (J.J.)
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
| | - Yusheng Li
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.L.); (Y.Q.); (Y.W.); (J.W.); (P.Z.); (S.C.); (W.H.); (T.Z.); (Y.L.); (L.L.); (J.J.)
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
| | - Lin Li
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.L.); (Y.Q.); (Y.W.); (J.W.); (P.Z.); (S.C.); (W.H.); (T.Z.); (Y.L.); (L.L.); (J.J.)
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
| | - Junchao Ji
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.L.); (Y.Q.); (Y.W.); (J.W.); (P.Z.); (S.C.); (W.H.); (T.Z.); (Y.L.); (L.L.); (J.J.)
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
| | - Aibin He
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
- Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Zhiyong Ai
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
- Hunan Hybrid Rice Research Center, Changsha 410125, China
| |
Collapse
|
2
|
Rasul M, Yahya M, Suleman M, Hakim S, Mirza BS, Mirza MS, Reitz T, Tarkka MT, Yasmin S. Diversity and functional traits based indigenous rhizosphere associated phosphate solubilizing bacteria for sustainable production of rice. Front Microbiol 2024; 15:1470019. [PMID: 39735185 PMCID: PMC11671494 DOI: 10.3389/fmicb.2024.1470019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/14/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction Rice, particularly Basmati rice, holds significant global importance as a staple food. The indiscriminate use of phosphate-based fertilizers during rice production has led to high residual levels of these chemicals in soil, impacting soil health and fertility. This study aimed to address this challenge by investigating the potential of phosphate solubilizing bacteria (PSB) in improving soil fertility and boosting the growth of Basmati rice. Methods Using amplicon-based 16S rDNA sequencing, bacterial isolation and cultivation, conducting greenhouse and field experiments, and PSB localization, we optimized the search for PSB inoculants to enhance Basmati rice growth. Results and discussion Rice rhizosphere prokaryote communities showed significant differences in microbial diversity and composition between between basmati and non-basmati rice cultivated areas. Dominant bacterial phyla included Proteobacteria, Acidobacteria, Actinobacteria, and Firmicutes, with Actinobacteria and Proteobacteria playing a crucial role in nutrient recycling. Isolation and optimization of PSB strains, including Acinetobacter sp. MR5 and Pseudomonas sp. R7, were carried out and soil microcosm studies confirmed their efficacy in increasing soil available phosphorus concentration. Response surface methodology revealed the relative importance of factors such as pH, inoculum density and incubation temperature in maximising phosphate solubilization. Microplot experiments demonstrated the effectiveness of optimized PSB inoculants in promoting Basmati rice growth, with significant increases in plant height, tiller number, biomass, and grain yield compared to uninoculated controls. A consortium of PSB proved superior to single-strain inoculants, even with reduced chemical fertilizer application. Field trials at several rice growing sites confirmed the positive impact of the PSB consortium on grain yield, soil phosphorus availability, and plant phosphorus uptake. The competence and persistence of the inoculated strains in the rhizosphere was confirmed by FISH and BOX Polymerase Chain Reaction (BOX-PCR). This work highlights the potential of PSB-based biofertilizers to improve soil fertility, promote sustainable rice production and reduce the negative environmental impacts of chemical fertilizers. Future research would focus on scaling up these findings for widespread adoption in agriculture and exploring their applicability to other crops and agroecosystems.
Collapse
Affiliation(s)
- Maria Rasul
- Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Mahreen Yahya
- Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Muhammad Suleman
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - Sughra Hakim
- Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Babur S. Mirza
- Department of Biology, Missouri State University, Springfield, MO, United States
| | - Muhammad Sajjad Mirza
- Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Thomas Reitz
- Department of Soil Ecology, UFZ - Helmholtz-Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Mika Tapio Tarkka
- Department of Soil Ecology, UFZ - Helmholtz-Centre for Environmental Research, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Sumera Yasmin
- Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| |
Collapse
|
3
|
Jin W, Li L, Ma G, Wei Z. Halotolerant Microorganism-Based Soil Conditioner Application Improved the Soil Properties, Yield, Quality and Starch Characteristics of Hybrid Rice under Higher Saline Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2325. [PMID: 39204761 PMCID: PMC11359022 DOI: 10.3390/plants13162325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Soil salinity represents a significant factor affecting agricultural productivity and crop quality. The present study was conducted to investigate the effects of soil conditioner (SC) comprising halotolerant microorganisms on the soil fertility, yield, rice quality, and the physicochemical and structural properties of starch in hybrid rice under saline conditions. The experimental treatments were composed of two high-quality hybrid rice varieties, i.e., 'Y Liangyou 957' (YLY957) and Jing Liangyou 534 (JLY534), and two soil amendment treatments, i.e., the application of SC at control levels and 2250 kg hm-2, or 'CK and SC', respectively. The crop was subjected to a mixture of fresh and sea water (EC 11 dS/m). The results demonstrated that the application of SC significantly enhanced the rice yield under salt stress conditions owing to an increase in the number of grains per panicle. Furthermore, SC was found to be effective in improving the organic matter and soil nutrient content. Furthermore, the application of SC resulted in an improvement in antioxidant defense, higher leaf SPAD values, and greater crop biomass, as well as the translocation of photo-assimilates at the heading stage. The application of SC not only improved the milling and appearance quality but also enhanced the taste value of rice by increasing the amylose and reducing the protein content. Furthermore, the application of SC also decreased the indentations on the surfaces of starch granules and cracks on the edges of the granules. The rice varieties subjected to SC exhibited excellent pasting properties, characterized by reduced proportions of amylopectin short chains and a lower gelatinization temperature and enthalpy of gelatinization. Overall, these findings serve to reinforce the efficacy of soil conditioner as a valuable tool to improve rice productivity and sustainability with improved rice grain quality under saline conditions.
Collapse
Affiliation(s)
- Wenyu Jin
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (W.J.); (G.M.)
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Sanya 572024, China
| | - Lin Li
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Sanya 572024, China
| | - Guohui Ma
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (W.J.); (G.M.)
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Sanya 572024, China
| | - Zhongwei Wei
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China; (W.J.); (G.M.)
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Sanya 572024, China
| |
Collapse
|
4
|
Nasuelli M, Novello G, Gamalero E, Massa N, Gorrasi S, Sudiro C, Hochart M, Altissimo A, Vuolo F, Bona E. PGPB and/or AM Fungi Consortia Affect Tomato Native Rhizosphere Microbiota. Microorganisms 2023; 11:1891. [PMID: 37630451 PMCID: PMC10458106 DOI: 10.3390/microorganisms11081891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Tomatoes are one of the most important crops worldwide and also play a central role in the human diet. Microbial consortia are microorganism associations, often employed as bioinoculants, that can interact with the native rhizosphere microbiota. The aim of this study was to evaluate the impact of a bacterial-based biostimulant (Pseudomonas fluorescens and Bacillus amyloliquefaciens) (PSBA) in combination, or not, with a commercial inoculum Micomix (Rhizoglomus irregulare, Funnelliformis mosseae, Funnelliformis caledonium, Bacillus licheniformis, Bacillus mucilaginosus) (MYC) on the native rhizosphere communities and on tomato production. The trial was carried out using Solanum lycopersicum in an open field as follows: control full NPK (CFD), control reduced NPK (CRD), MYC, PSBA, PSBA + MYC. Bacterial population in the different samples were characterized using a next generation sequencing approach. The bioinocula effect on the native rhizosphere microbiota resulted in significant variation both in alpha and beta diversity and in a specific signature associated with the presence of biostimulants, especially in the presence of co-inoculation (PSBA + MYC). In particular, the high initial biodiversity shifts in the community composition occurred and consisted in the increase in the abundance of genera correlated to the soil acidification and in an enhanced density of nitrogen-fixing microbes. The results also highlighted the well-known rhizosphere effect.
Collapse
Affiliation(s)
- Martina Nasuelli
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica (DISSTE), Università del Piemonte Orientale, 13100 Vercelli, Italy;
| | - Giorgia Novello
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, 15121 Alessandria, Italy; (E.G.); (N.M.)
| | - Elisa Gamalero
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, 15121 Alessandria, Italy; (E.G.); (N.M.)
| | - Nadia Massa
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, 15121 Alessandria, Italy; (E.G.); (N.M.)
| | - Susanna Gorrasi
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, 01100 Viterbo, Italy;
| | - Cristina Sudiro
- Landlab S.r.l., 36050 Quinto Vicentino, Italy; (C.S.); (M.H.); (A.A.)
| | - Marie Hochart
- Landlab S.r.l., 36050 Quinto Vicentino, Italy; (C.S.); (M.H.); (A.A.)
| | - Adriano Altissimo
- Landlab S.r.l., 36050 Quinto Vicentino, Italy; (C.S.); (M.H.); (A.A.)
| | | | - Elisa Bona
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica (DISSTE), Università del Piemonte Orientale, 13100 Vercelli, Italy;
- Center on Autoimmune and Allergic Diseases (CAAD), Università del Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
5
|
Marghoob MU, Nawaz A, Ahmad M, Waheed MQ, Khan MH, Imtiaz M, Islam EU, Imran A, Mubeen F. Assessment of halotolerant bacterial and fungal consortia for augmentation of wheat in saline soils. Front Microbiol 2023; 14:1207784. [PMID: 37455747 PMCID: PMC10347533 DOI: 10.3389/fmicb.2023.1207784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Adaptations of green technologies to counter abiotic stress, including salinity for crops like wheat by using halotolerant microbes, is a promising approach. The current study investigated 17 salt-affected agroecological zones from the Punjab and Sindh provinces of Pakistan to explore the potential of indigenous microbial flora, with their multiple biochemical characteristics in addition to plant growth promoting (PGP) traits, for enhanced wheat production in saline areas. Initially, 297 isolated pure bacterial colonies were screened for salt tolerance, biochemical, and PGP traits. Three bacterial strains belonging to Pantoea spp. and Erwinia rhaphontici with possession of multiple characteristics were selected for the development of the halotolerant bacterial consortium. Inoculation of two local wheat varieties, Faisalabad 2008 and Galaxy 2013, with the consortium for in vitro seed germination assay and sand microcosm experiments exhibited significant improvement of selected plant growth parameters like germination percentage and root structure. Two previously reported PGP fungal strains of Trichoderma harzianum and T. viridae were also used as fungal consortium separately for pot experiments and field trials. The pot experiments exhibited a positive correlation of consortia with metabolic viz. catalase, peroxidase, and proline and agronomical parameters including shoot length, dry weight, number of spikes, spike length, and 100 grain weight. To evaluate their performance under natural environmental conditions, field trials were conducted at three salt-affected sites. Agronomical attributes including days of flowering and maturity, flag leaf weight, length and width, shoot length, number of spikes, spike length, spike weight, number of seeds spike-1, 1,000 grain weight, and plot yield indicated the efficiency of these microbes to enhance wheat growth. Concisely, the bacterial consortium showed better performance and Faisalabad 2008 was a more resistant variety as compared to Galaxy 2013. Initial promising results indicate that further extensive research on indigenous microbes might lead to the development of Pakistan's first saline-specific biofertilizers and sustainable eco-friendly agriculture practices.
Collapse
Affiliation(s)
- Muhammad Usama Marghoob
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Islamabad, Pakistan
| | - Aniqa Nawaz
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Islamabad, Pakistan
| | - Muhammad Ahmad
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Islamabad, Pakistan
| | - Muhammad Qandeel Waheed
- Plant Breeding and Genetic Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Muhammad Hassaan Khan
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Imtiaz
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Islamabad, Pakistan
| | - Ejaz ul Islam
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Islamabad, Pakistan
| | - Asma Imran
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Islamabad, Pakistan
| | - Fathia Mubeen
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Islamabad, Pakistan
| |
Collapse
|
6
|
Shan S, Wei Z, Cheng W, Du D, Zheng D, Ma G. Biofertilizer based on halotolerant microorganisms promotes the growth of rice plants and alleviates the effects of saline stress. Front Microbiol 2023; 14:1165631. [PMID: 37362923 PMCID: PMC10288287 DOI: 10.3389/fmicb.2023.1165631] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
Long-term soil salinization easily contributes to soil hardness, soil nutrient imbalance, and soil microbial diversity reduction, resulting in low rice yields in the salinized fields, and microbial remediation is one of the important measures to improve salinized soil. To verify the effect of biofertilizer based on halotolerant microorganisms on promoting rice growth and alleviating saline stress, this study discussed the effects of biofertilizer on soil microbial diversity and community structure and analyzed the correlation between the formation of microbial community structure and soil nutrient factors in the salinized field. The result, in comparison with applying inorganic fertilizer (referred to as CK), showed that notably increased soil available nitrogen, available phosphorus, available potassium, and rice paddy yield (p < 0.05) and significantly decreased soil electrical conductivity (p < 0.05) were achieved via biofertilizer (referred to as G2). Additionally, the application of biofertilizer contributes to the increase in soil microbial diversity and reorganization of microbial community structure, and through the analysis of linear discriminant analysis effect size, a notable difference in relative abundance was found in 13 genera, 6 families, and 3 orders between the control group and experimental groups (p < 0.05), and by linear discriminant analysis, Desulfomonas was further identified as the differentiated indicator. The redundancy analysis showed that available phosphorus and cation exchange capacity were the key environmental factors that affected microbial community structure and composition. Through bacterial functional prediction, increased rhizosphere soil bacterial metabolism, enzyme activity, membrane transport, and other potential functions were achieved by applying biofertilizer. Therefore, the application of biofertilizer could significantly alleviate rice growth stress and increase nutrient supply capacity in saline soil. These findings provide theoretical support for soil microbial improvement technology in the salinized field.
Collapse
Affiliation(s)
- Shiping Shan
- Hunan Institute of Microbiology, Changsha, Hunan, China
| | - Zhongwei Wei
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
| | - Wei Cheng
- Hunan Institute of Microbiology, Changsha, Hunan, China
| | - Dongxia Du
- Hunan Institute of Microbiology, Changsha, Hunan, China
| | | | - Guohui Ma
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Guangdong Ocean University, Zhanjiang, Guangdong, China
| |
Collapse
|
7
|
Li M, Yao J, Sunahara G, Duran R, Liu B, Cao Y, Li H, Pang W, Liu H, Jiang S, Zhu J, Zhang Q. Assembly processes of bacterial and fungal communities in metal(loid)s smelter soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131153. [PMID: 36893604 DOI: 10.1016/j.jhazmat.2023.131153] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/20/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
There are few studies on concurrent bacterial and fungal community assembly processes that govern the metal(loid)s biogeochemical cycles at smelters. Here, a systematic investigation combined geochemical characterization, co-occurrence patterns, and assembly mechanisms of bacterial and fungal communities inhabiting soils around an abandoned arsenic smelter. Acidobacteriota, Actinobacteriota, Chloroflexi, and Pseudomonadota were dominant in bacterial communities, whereas Ascomycota and Basidiomycota dominated fungal communities. The random forest model indicated the bioavailable fractions of Fe (9.58%) were the main positive factor driving the beta diversity of bacterial communities, and the total N (8.09%) was the main negative factor for fungal communities. Microbe-contaminant interactions demonstrate the positive impact of the bioavailable fractions of certain metal(loid)s on bacteria (Comamonadaceae and Rhodocyclaceae) and fungi (Meruliaceae and Pleosporaceae). The fungal co-occurrence networks exhibited more connectivity and complexity than the bacterial networks. The keystone taxa were identified in bacterial (including Diplorickettsiaceae, norank_o_Candidatus_Woesebacteria, norank_o_norank_c_AT-s3-28, norank_o_norank_c_bacteriap25, and Phycisphaeraceae) and fungal (including Biatriosporaceae, Ganodermataceae, Peniophoraceae, Phaeosphaeriaceae, Polyporaceae, Teichosporaceae, Trichomeriaceae, Wrightoporiaceae, and Xylariaceae) communities. Meanwhile, community assembly analysis revealed that deterministic processes dominated the microbial community assemblies, which were highly impacted by pH, total N, and total and bioavailable metal(loid) content. This study provides helpful information to develop bioremediation strategies for the mitigation of metal(loid)s-polluted soils.
Collapse
Affiliation(s)
- Miaomiao Li
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Jun Yao
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Geoffrey Sunahara
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France
| | - Bang Liu
- Universite de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France
| | - Ying Cao
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Hao Li
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Wancheng Pang
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Houquan Liu
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Shun Jiang
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Junjie Zhu
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Qinghua Zhang
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|