1
|
Ran X, Wang T, Zhou M, Li Z, Wang H, Tsybekmitova GT, Guo J, Wang Y. A Novel Perspective on the Instability of Mainstream Partial Nitrification: The Niche Differentiation of Nitrifying Guilds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8922-8938. [PMID: 40294427 DOI: 10.1021/acs.est.5c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Short-cut biological nitrogen removal (sBNR) favors the paradigm shift toward energy-positive and carbon-neutral wastewater treatment processes. Partial nitrification (PN) is a key approach to provide nitrite for anammox or denitritation during sBNR, and its stability is the precondition for achieving robust nitrogen removal performance. However, maintaining a stable mainstream PN process has been a long-standing challenge. This review analyzes the mainstream PN process from a microbial ecology perspective, focusing on the niche differentiation among nitrifiers. First, we propose that mainstream PN systems are ecologically unstable, and the failure of the mainstream PN process due to the reactivation of nitrite-oxidizing bacteria (NOB) can be regarded as a behavior to restore system stabilization. Thus, maintaining mainstream PN systems primarily relies on enhancing the niche differentiation between ammonia-oxidizing bacteria (AOB) and NOB. We then summarize the realized niches of indigenous nitrifiers within nitrification systems and discuss their ecophysiological characteristics (e.g., cell structure and substrate affinity) that define their specific ecological niches. By comparing the niche breadths of AOB and NOB on various niche axes, we further discuss their niche differentiation and identify the different responses of AOB (resistance) and NOB (resilience) to exogenous perturbations. Finally, we propose outlook for achieving a stable mainstream PN process through an ecological lens. This review provides ecological insights into the instability of the mainstream PN process, which is intended to guide the derivation of optimized strategies from a single-factor approach to integrated solutions.
Collapse
Affiliation(s)
- Xiaochuan Ran
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Tong Wang
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Mingda Zhou
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Zibin Li
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Han Wang
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Gazhit Ts Tsybekmitova
- Institute of Natural Resources, Ecology and Cryology, Siberian Branch of Russian Academy Science, Nedorezova, 16a, Chita 672014, Russian Federation
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yayi Wang
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| |
Collapse
|
2
|
Siddique MAB, Mahalder B, Haque MM, Ahammad AKS. Impact of climatic factors on water quality parameters in tilapia broodfish ponds and predictive modeling of pond water temperature with ARIMAX. Heliyon 2024; 10:e37717. [PMID: 39323824 PMCID: PMC11422597 DOI: 10.1016/j.heliyon.2024.e37717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
Climate change represents a considerable threat to aquatic ecosystems, potentially affecting various water quality parameters.The study aims to assess the impacts climatic factors on the water quality parameters in tilapia broodfish pond and forecasting of water temperature in a tilapia broodfish pond using the ARIMAX model. Daily longitudinal time series data on water quality parameters were collected from the pond, while monthly climatic data were obtained from the Bangladesh Meteorological Department. Water temperature exhibited seasonal variation, peaking at 31.23 °C in October and dropping to 20.8 °C in December. pH levels ranged from 7.36 to 10.32, with the lowest recorded in December and the highest in August. Dissolved oxygen levels varied from 7.09 mg/L to 10.65 mg/L, with the lowest in September and the highest in January. Ammonia levels were highest in February at 0.33 mg/L. Water transparency ranged from 15.37 to 28 inches, with the highest in January and the lowest in June. Climatic factors significantly influenced these variations, as specified by Canonical correlation analysis (CCA). The best-fitting model, ARIMAX (1, 0, 1), indicated a fluctuating trend influenced by important exogenous factors like air temperature and solar intensity. By the end January 2025, the water temperature is expected to rise to 27.93 °C. This is a noticeable increase started from November to January. These higher temperatures may improve tilapia broodfish growth and development earlier. But the temperatures are predicted to drop started from February to March, which could negatively affect tilapia growth and development. A clear seasonal fluctuating pattern is exhibited in the future. These findings provide important insights for researchers, policymakers, academics, and those involved in tilapia farming. By considering air temperature and solar intensity in planning, stakeholders can better anticipate future pond conditions. Developing adaptive management strategies to reduce negative impacts and make the most of favorable conditions will be essential for sustainable tilapia production in the context of climate change.
Collapse
Affiliation(s)
- Mohammad Abu Baker Siddique
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Balaram Mahalder
- Department of Aquaculture, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Mahfujul Haque
- Department of Aquaculture, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - A. K. Shakur Ahammad
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
3
|
Shao YH, Wu JH, Chen HW. Comammox Nitrospira cooperate with anammox bacteria in a partial nitritation-anammox membrane bioreactor treating low-strength ammonium wastewater at high loadings. WATER RESEARCH 2024; 257:121698. [PMID: 38705066 DOI: 10.1016/j.watres.2024.121698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Research has revealed that comammox Nitrospira and anammox bacteria engage in dynamic interactions in partial nitritation-anammox reactors, where they compete for ammonium and nitrite or comammox Nitrospria supply nitrite to anammox bacteria. However, two gaps in the literature are present: the know-how to manipulate the interactions to foster a stable and symbiotic relationship and the assessment of how effective this partnership is for treating low-strength ammonium wastewater at high hydraulic loads. In this study, we employed a membrane bioreactor designed to treat synthetic ammonium wastewater at a concentration of 60 mg N/L, reaching a peak loading of 0.36 g N/L/day by gradually reducing the hydraulic retention time to 4 hr. Throughout the experiment, the reactor achieved an approximately 80 % nitrogen removal rate through strategically adjusting intermittent aeration at every stage. Notably, the genera Ca. Kuenena, Nitrosomonas, and Nitrospira collectively constituted approximately 40 % of the microbial community. Under superior intermittent aeration conditions, the expression of comammox amoA was consistently higher than that of Nitrospira nxrB and AOB amoA in the biofilm, despite the higher abundance of Nitrosomonas than comammox Nitrospira, implying that the biofilm environment is favorable for fostering cooperation between comammox and anammox bacteria. We then assessed the in situ activity of comammox Nitrospira in the reactor by selectively suppressing Nitrosomonas using 1-octyne, thereby confirming that comammox Nitrospira played the primary role in facilitating the nitritation (33.1 % of input ammonium) rather than complete nitrification (7.3 % of input ammonium). Kinetic analysis revealed a specific ammonia-oxidizing rate 5.3 times higher than the nitrite-oxidizing rate in the genus Nitrospira, underscoring their critical role in supplying nitrite. These findings provide novel insights into the cooperative interplay between comammox Nitrospira and anammox bacteria, potentially reshaping the management of nitrogen cycling in engineered environments, and aiding the development of microbial ecology-driven wastewater treatment technologies.
Collapse
Affiliation(s)
- Yung-Hsien Shao
- Department of Environmental Engineering, National Cheng Kung University, No.1, University Road, East District, Tainan 70101, Taiwan
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, No.1, University Road, East District, Tainan 70101, Taiwan.
| | - Huei-Wen Chen
- Department of Environmental Engineering, National Cheng Kung University, No.1, University Road, East District, Tainan 70101, Taiwan
| |
Collapse
|
4
|
Chen J, Liu X, Lu T, Liu W, Zheng Z, Chen W, Yang C, Qin Y. The coupling of anammox with microalgae-bacteria symbiosis: Nitrogen removal performance and microbial community. WATER RESEARCH 2024; 252:121214. [PMID: 38301528 DOI: 10.1016/j.watres.2024.121214] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
The partial nitrification-anammox process for ammonia nitrogen wastewater treatment requires mechanical aeration to provide oxygen, which is not conducive to energy saving. The microalgae-bacteria symbiotic system (MaBS) has the advantages of low carbon and energy saving in wastewater biological nitrogen removal. Therefore, this study combined the MaBS with an anammox process to provide oxygen, through the photosynthesis of microalgae instead of mechanical aeration. We investigated the nitrogen removal efficiency and long-term operation of a co-culture system comprising microalgae, nitrifying bacteria (NB), denitrifying bacteria (DnB), and anaerobic ammonium-oxidation bacteria (AnAOB) in a sequencing batch reactor without mechanical aeration. The experiment was divided into three steps: firstly, cultivating NB; then, adding three kinds of microalgae which were Chlorella sp., Anabaena sp., and Navicula sp. to the bioreactor to construct a microalgae-bacteria symbiotic system; finally, adding anammox sludge to construct the anammox and microalgae-bacteria symbiosis (Anammox-MaBS) system. The results demonstrated that nitrification, denitrification, and anammox processes were coupled successfully, and the maximum TN removal efficiency of the stable Anammox-MaBS system was 99.51 % when the concentration of the influent NH4+-N was 100 mg/L. The addition of microalgae in ammonia wastewater promoted the enrichment of DnB and AnAOB, which were Denitratisoma, Haliangium, unclassified_Rhodocyclaceae, and Candidatus_Brocadia. Furthermore, the unique biofilm structure could effectively alleviate the photoinhibition of light-sensitive bacteria, which may be the reason for the long-term adaptation of Candidatus_Brocadia to light conditions. This research can provide a low-cost solution to bacterial photoinhibition in the coexistence system of microalgae and bacteria without mechanical aeration, offering theoretical support for low-carbon and energy-efficient treatment of wastewater.
Collapse
Affiliation(s)
- Jiannv Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Xiangyin Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Tiansheng Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Wenxuan Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Zhiwen Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Wenxi Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Chu Yang
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Yujie Qin
- School of Environment and Energy, South China University of Technology, Guangzhou, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Jiang C, Zhang S, Wang J, Xia X. Nitrous Oxide (N 2O) Emissions Decrease Significantly under Stronger Light Irradiance in Riverine Water Columns with Suspended Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19749-19759. [PMID: 37945339 DOI: 10.1021/acs.est.3c05526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Nitrous oxide (N2O) emissions from riverine water columns with suspended particles are important for the global N2O budget. Although sunlight is known to influence the activity of nitrogen-cycling microorganisms, its specific influence on N2O emissions in river systems remains unknown. This study analyzed the influences of light irradiance on N2O emissions in simulated oxic water columns with 15N-labeling and biological molecular techniques. Our results showed that N2O emissions were inhibited by light in the ammonium system (only 15NH4+ was added) and significantly decreased with increasing light irradiance in the nitrate system (only 15NO3- was added), despite contrasting variations in N2 emissions between these two systems. Lower N2O emission rates in the nitrate system under higher light conditions resulted from higher promotion levels of N2O reduction than N2O production. Increased N2O reduction was correlated to higher organic carbon bioavailability caused by photodegradation and greater potential for complete denitrification. Lower N2O production and higher N2O reduction were responsible for the lower N2O emissions observed in the ammonium system under light conditions. Our findings highlight the importance of sunlight in regulating N2O dynamics in riverine water columns, which should be considered in developing large-scale models for N2O processing and emissions in rivers.
Collapse
Affiliation(s)
- Chenrun Jiang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Sibo Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Junfeng Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|