1
|
Jang YJ, Oh SD, Hong JK, Park JC, Lee SK, Chang A, Yun DW, Lee B. Impact of genetically modified herbicide-resistant maize on rhizosphere bacterial communities. GM CROPS & FOOD 2025; 16:186-198. [PMID: 39950610 PMCID: PMC11834531 DOI: 10.1080/21645698.2025.2466915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Rhizosphere bacterial community studies offer valuable insights into the environmental implications of genetically modified (GM) crops. This study compared the effects of a non-GM maize cultivar, namely Hi-IIA, with those of a herbicide-resistant maize cultivar containing the phosphinothricin N-acetyltransferase gene on the rhizosphere bacterial community across growth stages. 16s rRNA amplicon sequencing and data analysis tools revealed no significant differences in bacterial community composition or diversity between the cultivars. Principal component analysis revealed that differences in community structure were driven by plant growth stages rather than plant type. Polymerase chain reaction analysis was conducted to examine the potential horizontal transfer of the introduced gene from the GM maize to rhizosphere microorganisms; however, the introduced gene was not detected in the soil genomic DNA. Overall, the environmental impact of GM maize, particularly on soil microorganisms, is negligible, and the cultivation of GM maize does not alter significantly the rhizosphere bacterial community.
Collapse
Affiliation(s)
- Ye-Jin Jang
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Korea
| | - Sung-Dug Oh
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Korea
| | - Joon Ki Hong
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Korea
| | - Jong-Chan Park
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Korea
| | - Seong-Kon Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Korea
| | - Ancheol Chang
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Korea
| | - Doh-Won Yun
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Korea
| | - Bumkyu Lee
- Department of Environment Science & Biotechnology, Jeonju University, Jeonju, Korea
| |
Collapse
|
2
|
Wen Z, Yang M, Han H, Fazal A, Liao Y, Ren R, Yin T, Qi J, Sun S, Lu G, Hu S, Yang Y. Mycorrhizae Enhance Soybean Plant Growth and Aluminum Stress Tolerance by Shaping the Microbiome Assembly in an Acidic Soil. Microbiol Spectr 2023; 11:e0331022. [PMID: 36916950 PMCID: PMC10100836 DOI: 10.1128/spectrum.03310-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/16/2023] [Indexed: 03/15/2023] Open
Abstract
Strongly acidic soils are characterized by high aluminum (Al) toxicity and low phosphorus (P) availability, which suppress legume plant growth and nodule development. Arbuscular mycorrhizal fungi (AMF) stimulate rhizobia and enhance plant P uptake. However, it is unclear how this symbiotic soybean-AMF-rhizobial trio promotes soybean growth in acidic soils. We examined the effects of AMF and rhizobium addition on the growth of two soybean genotypes, namely, Al-tolerant and Al-sensitive soybeans as well as their associated bacterial and fungal communities in an acidic soil. With and without rhizobial addition, AMF significantly increased the fresh shoot and root biomass of Al-tolerant soybean by 47%/87% and 37%/24%, respectively. This increase in plant biomass corresponded to the enrichment of four plant growth-promoting rhizobacteria (PGPR) in the rhizospheric soil, namely, Chitinophagaceae bacterium 4GSH07, Paraburkholderia soli, Sinomonas atrocyanea, and Aquincola tertiaricarbonis. For Al-sensitive soybean, AMF addition increased the fresh shoot and root biomass by 112%/64% and 30%/217%, respectively, with/without rhizobial addition. Interestingly, this significant increase coincided with a decrease in the pathogenic fungus Nigrospora oryzae as well as an increase in S. atrocyanea, A. tertiaricarbonis, and Talaromyces verruculosus (a P-solubilizing fungus) in the rhizospheric soil. Lastly, the compartment niche along the soil-plant continuum shaped microbiome assembly, with pathogenic/saprotrophic microbes accumulating in the rhizospheric soil and PGPR related to nitrogen fixation or stress resistance (e.g., Rhizobium leguminosarum and Sphingomonas azotifigens) accumulating in the endospheric layer. IMPORTANCE Taken together, this study examined the effects of arbuscular mycorrhizal fungi (AMF) and rhizobial combinations on the growth of Al-tolerant and Al-sensitive soybeans as well as their associated microbial communities in acidic soils and concluded that AMF enhances soybean growth and Al stress tolerance by recruiting PGPR and altering the root-associated microbiome assembly in a host-dependent manner. In the future, these findings will help us better understand the impacts of AMF on rhizosphere microbiome assembly and will contribute to the development of soybean breeding techniques for the comprehensive use of PGPR in sustainable agriculture.
Collapse
Affiliation(s)
- Zhongling Wen
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Minkai Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hongwei Han
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Aliya Fazal
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yonghui Liao
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ran Ren
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jinliang Qi
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Shucun Sun
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Guihua Lu
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’an, China
| | - Shuijin Hu
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Yonghua Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|