1
|
Huang X, Jin Y, Wang T, Fu D, Ma J, Yu X, Lu Y, Song J, Chen Y, Yan R, Zhang Y. Gut Akkermansia enhances liver protection and facilitates copper removal during D-penicillamine treatment in a Wilson's disease model. Microbiol Spectr 2025; 13:e0057324. [PMID: 40162768 PMCID: PMC12054026 DOI: 10.1128/spectrum.00573-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/08/2025] [Indexed: 04/02/2025] Open
Abstract
Patients afflicted with Wilson's disease (WD) may encounter hepatic and extraneous manifestations due to the progressive accumulation of copper in the liver and other subsequent organs. Copper-chelating agents, such as D-penicillamine (DPA), are commonly utilized in the medical treatment of copper overload in WD. Manipulating the composition of gut microbiota appropriately can enhance drug efficacy and safety. This study aims to investigate how targeted intervention on gut microbiota influences the effectiveness of copper removal in a WD model during DPA treatment. First, following a 4-week treatment of DPA, the liver copper concentration and gut microbial composition were assessed in the WD mice model to identify potential candidates for targeted regulation of gut microbiota. Second, after 8 weeks of manipulating the gut microbiota during DPA treatment, various parameters including blood liver function indicators, tissue copper load, hepatic histopathological features, and gut microbiota were investigated in WD mice. The findings demonstrated that the presence of Akkermansia significantly enhances the efficacy of DPA, leading to a more efficient elimination of copper from tissues and a greater improvement in liver injury, liver dysfunction, and gut dysbiosis. In contrast, Butyricimonas has an antagonistic effect. The results of gene function prediction analysis indicated that the altered gut microbial function by DPA and Akk is primarily linked to energy generation/utilization, amino acid, fatty acid, lipid, and nucleic acid metabolisms. To summarize, this study provides experimental evidence for the potential application of targeted regulation of gut microbiota in the adjunctive therapy of copper dysregulation disease.IMPORTANCECopper is an essential element in virtually all living organisms. Wilson's disease (WD) is a representative disorder caused by the disruption of copper homeostasis. Oral-chelating agents are the first-line treatment for copper-overloaded diseases, with D-penicillamine (DPA) being the prototypical drug. However, the efficacy and adverse effects of DPA remain challenging in its use for WD treatment. In our study, the supplementation of Akkermansia muciniphila (Akk), a key gut microbe, along with DPA was demonstrated to enhance copper removal, ameliorate liver injury and dysfunction, and restore gut dysbiosis in a mouse model of WD. These findings highlight the significant potential applications of targeted modulation of gut microbiota as "pharmacomicrobiomics" in adjunctive therapy for disorders involving copper dysregulation.
Collapse
Affiliation(s)
- Xi Huang
- Department of Electrocardiogram, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanqi Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Hospital-Acquired Infection Control, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tianyuan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Danting Fu
- Department of Experimental Animals, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jindi Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaopeng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingfeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingyuan Song
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Chen
- Department of Experimental Animals, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yimin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Infectious Diseases, Haining People’s Hospital, Haining, Zhejiang, China
| |
Collapse
|
2
|
Gao F, Cheng C, Li R, Chen Z, Tang K, Du G. The role of Akkermansia muciniphila in maintaining health: a bibliometric study. Front Med (Lausanne) 2025; 12:1484656. [PMID: 39967592 PMCID: PMC11833336 DOI: 10.3389/fmed.2025.1484656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Background Akkermansia muciniphila, as a probiotic, is negatively linked to IBD, obesity, and T2DM. The aim of this study was to comprehensively assess the research status of Akkermansia muciniphila over the past decade and explore the relationships between this bacterium and various health-related aspects. Methods Tools VOSviewer, Bibliometrix, and CiteSpace were used to analyze various aspects including publication metrics, contributors, institutions, geography, journals, funding, and keywords. Results Over the past decade, research on Akkermansia muciniphila has demonstrated a consistent annual growth in the number of publications, with a notable peak in 2021. China led in the number of publications, totaling 151, whereas the United States exhibited a higher centrality value. Among the 820 institutions involved in the research, the University of California (from the United States) and the Chinese Academy of Sciences (from China) occupied central positions. Willem M. De Vos ranked at the top, with 12 publications and 1,108 citations. The journal GUT, which had 5,125 citations and an Impact Factor of 23.0 in 2024, was the most highly cited. The most cited articles deepened the understanding of the bacterium's impact on human health, spanning from basic research to translational medicine. Thirty-nine high-frequency keywords were grouped into five clusters, illustrating Akkermansia muciniphila's associations with metabolic diseases, chronic kidney disease, the gut-brain axis, intestinal inflammation, and Bacteroidetes-Firmicutes shifts. Conclusion Given Akkermansia muciniphila's anti-inflammatory and gut-barrier-strengthening properties, it holds promise as a therapeutic for obesity, metabolic disorders, and inflammatory conditions. Therefore, future research should explore its potential further by conducting clinical trials, elucidating its mechanisms of action, and investigating its efficacy and safety in diverse patient populations.
Collapse
Affiliation(s)
- Fangfang Gao
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Canyu Cheng
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Runwei Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Zongcun Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
- Department of Endocrinology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ke Tang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Guankui Du
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| |
Collapse
|
3
|
Mei L, Wang J, Hao Y, Zeng X, Yang Y, Wu Z, Ji Y. A comprehensive update on the immunoregulatory mechanisms of Akkermansia muciniphila: insights into active ingredients, metabolites, and nutrient-driven modulation. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39413040 DOI: 10.1080/10408398.2024.2416481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Akkermansia muciniphila (A. muciniphila) has gained recognition as a pioneering probiotic, exhibiting considerable potential to enhance immune conditions across both humans and animals. The health benefits of A. muciniphila are attributed to its various components, including outer membrane proteins (PilQ and Amuc_1100), secreted proteins (P9 and AmTARS), extracellular vesicles, and metabolites such as SCFAs, ornithine lipids, γ-aminobutyric acid, cobalamin, and inosine. The dynamic control of the mucus layer by A. muciniphila plays a crucial role in regulating intestinal mucosal immunity. Furthermore, A. muciniphila modulates immune function by interacting with macrophages, dendritic cells, T lymphocytes, and Paneth cells. Increasing the abundance of A. muciniphila in the gut through nutritional strategies represents a safe and effective means to augment immune function. Various polyphenols, oligosaccharides, and polysaccharides have been shown to elevate the levels of this bacterium, thereby contributing to favorable immunoregulatory outcomes. This paper delves into the latest research advancements related to the probiotic mechanisms of A. muciniphila and provides an overview of the current understanding of how its abundance responds to nutrients. These insights offer a theoretical foundation for the utilization of A. muciniphila in immunoregulation.
Collapse
Affiliation(s)
- Lihua Mei
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Jiaxin Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Lockwood MB, Sung C, Alvernaz SA, Lee JR, Chin JL, Nayebpour M, Bernabé BP, Tussing-Humphreys LM, Li H, Spaggiari M, Martinino A, Park CG, Chlipala GE, Doorenbos AZ, Green SJ. The Gut Microbiome and Symptom Burden After Kidney Transplantation: An Overview and Research Opportunities. Biol Res Nurs 2024; 26:636-656. [PMID: 38836469 DOI: 10.1177/10998004241256031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Many kidney transplant recipients continue to experience high symptom burden despite restoration of kidney function. High symptom burden is a significant driver of quality of life. In the post-transplant setting, high symptom burden has been linked to negative outcomes including medication non-adherence, allograft rejection, graft loss, and even mortality. Symbiotic bacteria (microbiota) in the human gastrointestinal tract critically interact with the immune, endocrine, and neurological systems to maintain homeostasis of the host. The gut microbiome has been proposed as an underlying mechanism mediating symptoms in several chronic medical conditions including irritable bowel syndrome, chronic fatigue syndrome, fibromyalgia, and psychoneurological disorders via the gut-brain-microbiota axis, a bidirectional signaling pathway between the enteric and central nervous system. Post-transplant exposure to antibiotics, antivirals, and immunosuppressant medications results in significant alterations in gut microbiota community composition and function, which in turn alter these commensal microorganisms' protective effects. This overview will discuss the current state of the science on the effects of the gut microbiome on symptom burden in kidney transplantation and future directions to guide this field of study.
Collapse
Affiliation(s)
- Mark B Lockwood
- Department of Biobehavioral Nursing Science, University of Illinois Chicago College of Nursing, Chicago, IL, USA
| | - Choa Sung
- Post-Doctoral Fellow, Department of Biobehavioral Nursing Science, University of Illinois Chicago College of Nursing, Chicago, IL, USA
| | - Suzanne A Alvernaz
- Graduate Student, Department of Biomedical Engineering, University of Illinois ChicagoColleges of Engineering and Medicine, Chicago, IL, USA
| | - John R Lee
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jennifer L Chin
- Medical Student, Touro College of Osteopathic Medicine, Middletown, NY, USA
| | - Mehdi Nayebpour
- Virginia BioAnalytics LLC, Washington, District of Columbia, USA
| | - Beatriz Peñalver Bernabé
- Graduate Student, Department of Biomedical Engineering, University of Illinois ChicagoColleges of Engineering and Medicine, Chicago, IL, USA
| | - Lisa M Tussing-Humphreys
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Hongjin Li
- Department of Biobehavioral Nursing Science, University of Illinois Chicago College of Nursing, Chicago, IL, USA
| | - Mario Spaggiari
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Alessandro Martinino
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Chang G Park
- Department of Population Health Nursing Science, Office of Research Facilitation, University of Illinois Chicago, Chicago, IL, USA
| | - George E Chlipala
- Research Core Facility, Research Resources Center, University of Illinois Chicago, Chicago, IL, USA
| | - Ardith Z Doorenbos
- Department of Biobehavioral Nursing Science, University of Illinois ChicagoCollege of Nursing, Chicago, IL, USA
| | - Stefan J Green
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
5
|
Segers A, de Vos WM. Mode of action of Akkermansia muciniphila in the intestinal dialogue: role of extracellular proteins, metabolites and cell envelope components. MICROBIOME RESEARCH REPORTS 2023; 2:6. [PMID: 38045608 PMCID: PMC10688800 DOI: 10.20517/mrr.2023.05] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 12/05/2023]
Abstract
Akkermansia muciniphila is a promising next-generation beneficial microbe due to its natural presence in the mucus layer of the gut, its symbiotic ability to degrade mucus, and its capacity to improve the intestinal barrier function. A. muciniphila is able to counteract weight gain and immuno-metabolic disturbances in several animal models. Many of these disorders, including obesity and auto-immune diseases, have been associated with decreased gut barrier function and consequent increased inflammation. Since A. muciniphila was found to normalize these changes and strengthen the gut barrier function, it is hypothesized that other beneficial effects of A. muciniphila might be caused by this restoration. In search for A. muciniphila's mode of action in enhancing the gut barrier function and promoting health, we reasoned that secreted components or cell envelope components of A. muciniphila are interesting candidates as they can potentially reach and interact with the epithelial barrier. In this review, we focus on the potential mechanisms through which A. muciniphila can exert its beneficial effects on the host by the production of extracellular and secreted proteins, metabolites and cell envelope components. These products have been studied in isolation for their structure, signaling capacity, and in some cases, also for their effects in preclinical models. This includes the protein known as Amuc_1100, which we here rename as pilus-associated signaling (PAS) protein , the P9 protein encoded by Amuc_1631, the short-chain fatty acids acetate and propionate, and cell envelope components, such as phosphatidylethanolamine and peptidoglycan.
Collapse
Affiliation(s)
- Anneleen Segers
- Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|