1
|
Gómez-Velázquez HDJ, González-Dávalos L, de los Ríos EA, Figueroa-Cárdenas JDD, Vázquez-Durán A, Méndez-Albores A, Shimada A, Mora O. Physicochemical characterization and 16S rRNA analysis of a direct-fed microbial from calf ruminal fluid and its protective effect on Sprague-Dawley rat gut barrier function. Transl Anim Sci 2025; 9:txaf003. [PMID: 40083360 PMCID: PMC11905223 DOI: 10.1093/tas/txaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/08/2025] [Indexed: 03/16/2025] Open
Abstract
This study aimed to characterize the physicochemical properties and microbiota composition of a direct-fed microbial (DFM) and evaluate its protective effect on intestinal permeability in Sprague-Dawley rats using fluorescein isothiocyanate dextran (FITC-d) as a biomarker. The DFM was further characterized using Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), environmental scanning electron microscopy (ESEM), energy-dispersive X-ray spectroscopy (EDS), and cell surface hydrophobicity (microbial adhesion to hexadecane [MATH] assay). The 16S rRNA gene was sequenced using short-read sequencing. In general, the DFM exhibited the characteristic FTIR bands associated with probiotic cells with a protein/carbohydrate ratio of 1.3:1. It was also found from the DLS analysis that the average particle size and surface electrical potential of the probiotic cells were 1,062 ± 77 nm and -32.6 ± 3.7 mV, respectively. ESEM studies confirmed the size of the cells (1,010 to 1,060 nm), showing a quasi-spherical cocci-type morphology, whereas EDS spectroscopy revealed a higher Nitrogen/Carbone ratio on the cell surface. Moreover, the MATH assay showed the hydrophobic character of the DFM (92% adhesion). Furthermore, based on the 16S rRNA gene analysis, the predominant genus in the DFM was Streptococcus (99%). Regarding the protective effect on the gut barrier, animals supplemented with 1011 CFU/mL exhibited a significantly reduced intestinal permeability compared with the control group. DFM supplementation also increased villi and crypt dimensions and Goblet cells (P < 0.05) in the ileum and cecum. These results demonstrate that the DFM presented adequate surface and colloidal properties that help maintain the functionality of the gut barrier.
Collapse
Affiliation(s)
- Haiku D J Gómez-Velázquez
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán (FESC), Universidad Nacional Autónoma de México (UNAM), Querétaro, Querétaro, Mexico
| | - Laura González-Dávalos
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán (FESC), Universidad Nacional Autónoma de México (UNAM), Querétaro, Querétaro, Mexico
| | - Erika A de los Ríos
- Unidad de Microscopía, Instituto de Neurobiología, UNAM, Querétaro, Querétaro, México
| | - Juan de Dios Figueroa-Cárdenas
- Materiales Bio-orgánicos, CINVESTAV-Unidad Querétaro, Libramiento Norponiente No. 2000, Fraccionamiento Real de Juriquilla, Querétaro, Querétaro, México
| | - Alma Vázquez-Durán
- Ciencia y Tecnología de Materiales, Unidad de Investigación Multidisciplinaria L14-A1 (Ciencia y Tecnología de Materiales), FESC, UNAM, Cuautitlán Izcalli, Estado de México, México
| | - Abraham Méndez-Albores
- Ciencia y Tecnología de Materiales, Unidad de Investigación Multidisciplinaria L14-A1 (Ciencia y Tecnología de Materiales), FESC, UNAM, Cuautitlán Izcalli, Estado de México, México
| | - Armando Shimada
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán (FESC), Universidad Nacional Autónoma de México (UNAM), Querétaro, Querétaro, Mexico
| | - Ofelia Mora
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán (FESC), Universidad Nacional Autónoma de México (UNAM), Querétaro, Querétaro, Mexico
| |
Collapse
|
2
|
Muchaamba F, Stephan R. A Comprehensive Methodology for Microbial Strain Typing Using Fourier-Transform Infrared Spectroscopy. Methods Protoc 2024; 7:48. [PMID: 38921827 PMCID: PMC11207048 DOI: 10.3390/mps7030048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Timely and accurate detection and characterization of microbial threats is crucial for effective infection and outbreak management. Additionally, in food production, rapid microbe identification is indispensable for maintaining quality control and hygiene standards. Current methods for typing microbial strains often rely on labor-intensive, time-consuming, and expensive DNA- and sera-serotyping techniques, limiting their applicability in rapid-response scenarios. In this context, the IR Biotyper®, utilizing Fourier-transform infrared (FTIR) spectroscopy, offers a novel approach, providing specific spectra for fast strain typing within 3 h. This methodology article serves as a comprehensive resource for researchers and technicians aiming to utilize FTIR spectroscopy for microbial strain typing. It encompasses detailed guidelines on sample preparation, data acquisition, and analysis techniques, ensuring the generation of reliable and reproducible results. We highlight the IR Biotyper®'s rapid and accurate discrimination capabilities, showcasing its potential for real-time pathogen monitoring and source-tracking to enhance public health and food safety. We propose its integration as an early screening method, followed by more detailed analysis with whole-genome sequencing, to optimize detection accuracy and response efficiency in microbial surveillance systems.
Collapse
Affiliation(s)
- Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, CH-8057 Zurich, Switzerland
| | | |
Collapse
|
3
|
Manzulli V, Cordovana M, Serrecchia L, Rondinone V, Pace L, Farina D, Cipolletta D, Caruso M, Fraccalvieri R, Difato LM, Tolve F, Vetritto V, Galante D. Application of Fourier Transform Infrared Spectroscopy to Discriminate Two Closely Related Bacterial Species: Bacillus anthracis and Bacillus cereus Sensu Stricto. Microorganisms 2024; 12:183. [PMID: 38258007 PMCID: PMC10821103 DOI: 10.3390/microorganisms12010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Fourier transform infrared spectroscopy (FTIRS) is a diagnostic technique historically used in the microbiological field for the characterization of bacterial strains in relation to the specific composition of their lipid, protein, and polysaccharide components. For each bacterial strain, it is possible to obtain a unique absorption spectrum that represents the fingerprint obtained based on the components of the outer cell membrane. In this study, FTIRS was applied for the first time as an experimental diagnostic tool for the discrimination of two pathogenic species belonging to the Bacillus cereus group, Bacillus anthracis and Bacillus cereus sensu stricto; these are two closely related species that are not so easy to differentiate using classical microbiological methods, representing an innovative technology in the field of animal health.
Collapse
Affiliation(s)
- Viviana Manzulli
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (L.S.); (V.R.); (L.P.); (D.F.); (D.C.); (M.C.); (R.F.); (L.M.D.); (F.T.); (V.V.); (D.G.)
| | | | - Luigina Serrecchia
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (L.S.); (V.R.); (L.P.); (D.F.); (D.C.); (M.C.); (R.F.); (L.M.D.); (F.T.); (V.V.); (D.G.)
| | - Valeria Rondinone
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (L.S.); (V.R.); (L.P.); (D.F.); (D.C.); (M.C.); (R.F.); (L.M.D.); (F.T.); (V.V.); (D.G.)
| | - Lorenzo Pace
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (L.S.); (V.R.); (L.P.); (D.F.); (D.C.); (M.C.); (R.F.); (L.M.D.); (F.T.); (V.V.); (D.G.)
| | - Donatella Farina
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (L.S.); (V.R.); (L.P.); (D.F.); (D.C.); (M.C.); (R.F.); (L.M.D.); (F.T.); (V.V.); (D.G.)
| | - Dora Cipolletta
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (L.S.); (V.R.); (L.P.); (D.F.); (D.C.); (M.C.); (R.F.); (L.M.D.); (F.T.); (V.V.); (D.G.)
| | - Marta Caruso
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (L.S.); (V.R.); (L.P.); (D.F.); (D.C.); (M.C.); (R.F.); (L.M.D.); (F.T.); (V.V.); (D.G.)
| | - Rosa Fraccalvieri
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (L.S.); (V.R.); (L.P.); (D.F.); (D.C.); (M.C.); (R.F.); (L.M.D.); (F.T.); (V.V.); (D.G.)
| | - Laura Maria Difato
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (L.S.); (V.R.); (L.P.); (D.F.); (D.C.); (M.C.); (R.F.); (L.M.D.); (F.T.); (V.V.); (D.G.)
| | - Francesco Tolve
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (L.S.); (V.R.); (L.P.); (D.F.); (D.C.); (M.C.); (R.F.); (L.M.D.); (F.T.); (V.V.); (D.G.)
| | - Valerio Vetritto
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (L.S.); (V.R.); (L.P.); (D.F.); (D.C.); (M.C.); (R.F.); (L.M.D.); (F.T.); (V.V.); (D.G.)
| | - Domenico Galante
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy; (L.S.); (V.R.); (L.P.); (D.F.); (D.C.); (M.C.); (R.F.); (L.M.D.); (F.T.); (V.V.); (D.G.)
| |
Collapse
|