1
|
Li D, Zhang X, Zhang H, Fan Q, Guo B, Li J. A global meta-analysis reveals effects of heavy metals on soil microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138018. [PMID: 40138950 DOI: 10.1016/j.jhazmat.2025.138018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/01/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Heavy metal (HM) contamination disrupts soil ecosystem functions. Microorganisms are pivotal for sustaining soil health, but accurately assessing the ecological risks of HM contamination to microorganisms remains challenging. Here, we conducted a meta-analysis synthesizing 914 datasets from 72 studies to quantify and evaluate the impacts of HMs on microorganisms. The overall effect value results indicate that HM negatively impacts most microbiological indicators, with bacterial abundance (-38 %), fungal abundance (-18 %), microbial biomass carbon (-42 %), microbial biomass nitrogen (-44 %), arylsulfatase (-45 %) and dehydrogenase activity (-66 %) were significantly reduced (p < 0.01), suggesting they can act as sensitivity indicators for assessing ecological risk of microorganisms. Compared to bacteria, fungal indicators (e.g., fungal community structure and Shannon index) are less responsive to HM contamination. At low potential ecological risk index (RI < 150), HM contamination positively impacted certain microbial indicators, such as fungal abundance, fungal Shannon index, and β-glucosidase activity. With increasing RI levels, the negative effects of HMs on microorganisms became more pronounced. Microbiological indicators in acidic soils (pH < 6.5), coarse textured soils, and mining soils were more negatively affected by HMs. Random forest and structural equation modeling analysis also identified RI levels and pH as crucial factors in determining the microbial response to HMs. Adjusted RI (adRI) were calculated using adjusted toxicity factors (adTF). The adRI demonstrated stronger correlations with microbial indicators and lower root-mean-square error (RMSE) in the random forest model than the RI, indicating that adTF is a more effective method for evaluating the effects of HMs on microorganisms. This study enhances the accuracy of quantifying and assessing HM impacts on microorganisms, offering crucial scientific basis for environmental protection and soil remediation.
Collapse
Affiliation(s)
- Dale Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China; Department of Resources and Environmental Engineering, Shanxi Institute of Energy, Jinzhong, Shanxi 030600, China
| | - Xiujuan Zhang
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Hong Zhang
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qirui Fan
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Baobei Guo
- Pomology Institute, Shanxi Agricultural University, Taiyuan, Shanxi 030006, China
| | - Junjian Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
2
|
Radziemska M, Blazejczyk A, Gusiatin MZ, Cydzik-Kwiatkowska A, Majewski G, Brtnický M. Compost-diatomite-based phytostabilization course under extreme environmental conditions in terms of high pollutant contents and low temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174917. [PMID: 39034003 DOI: 10.1016/j.scitotenv.2024.174917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
The effects of changes in environmental temperatures on the immobilization or removal of cationic potentially toxic elements (PTE) in heavily polluted soils are often poorly understood, although both are widely studied in the context of phytostabilization. To address this issue, a novel compost-diatomite hybrid (CDH) amendment was developed and applied for assisted phytostabilization at two external temperature regimes. (Cd/Ni/Cu/Zn)-extremely polluted soils (unenriched and CDH-enriched) were cultivated with perennial ryegrass and native soil microbiome under greenhouse conditions and then transferred to freeze-thaw conditions (FTC). The decrease in metal potential toxicity in soils subjected to phytostabilization following both temperature treatments was characterized by a combination of sequential extraction and atomic absorption measurements. The soil microbiome was characterized by high-throughput sequencing. In a relative comparison, the greatest decrease in the content of all PTEs in CDH-enriched soil (compared to unenriched soil) appeared in FTC. Furthermore, under the influence of FTC, in the relative comparison between two CDH-enriched soils (exposed-, and not-exposed- to FTC) and two unenriched soils (exposed-, and not-exposed- to FTC), the content of all PTEs decreased more sharply in the CDH-enriched series than in the unenriched series. The largest redistribution into four sequentially extracted fractions in CDH-enriched soil was found for Zn. Based on the distribution pattern, Zn immobilization was greater in CDH-enriched soil in FTC. CDH increased species richness in the soil, while FTC stimulated the growth of Bacteroidia, Alphaproteobacteria, Theromomicrobia, and Gammaproteobacteria. The analysis of the functionalities of the microbiome indicated enhanced metal transportation and defense systems in samples exposed to FTC. The current research is crucial for understanding how extreme environmental conditions in both cases high pollutant levels and low temperatures affect the movement and transformation of PTEs in polluted soils during phytostabilization.
Collapse
Affiliation(s)
- Maja Radziemska
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Aurelia Blazejczyk
- Institute of Civil Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Mariusz Z Gusiatin
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-719 Olsztyn, Poland
| | - Agnieszka Cydzik-Kwiatkowska
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-719 Olsztyn, Poland
| | - Grzegorz Majewski
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Martin Brtnický
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| |
Collapse
|
3
|
Song T, Tu W, Chen S, Fan M, Jia L, Wang B, Yang Y, Li S, Luo X, Su M, Guo J. Relationships between high-concentration toxic metals in sediment and evolution of microbial community structure and carbon-nitrogen metabolism functions under long-term stress perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29763-29776. [PMID: 38592631 DOI: 10.1007/s11356-024-33150-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
Microorganisms are highly sensitive to toxic metal pollution and play an important role in the material cycling and energy flow of the water ecosystem. Herein, 13 sediment samples from Junchong Reservoir (Guangxi Province, China) were collected in December 2021. The spatial distribution of pollution levels for toxic metals and the effects of toxic metals on the composition, functional characteristics, and metabolism of microorganisms were investigated. The results demonstrated that the area is a proximate area to industrial zones with severity of toxic metal pollution. Their mean concentrations of As, Cu, Zn, and Pb were up to 128.79 mg/kg, 57.62 mg/kg, 594.77 mg/kg, and 97.12 mg/kg respectively. There was a strong correlation between As, Cu, Zn, and Pb, with the highest correlation coefficient reaching 0.94. As the level of toxic metal pollution increases, the diversity and abundance of microorganisms gradually decrease. Compared to those with lower pollution levels, the Shannon index in regions with higher pollution levels decreases by up to 0.373, and the Chao index decreases by up to 143.507. However, the relative abundance of Bacteroidota, Patescibacteria, and Chloroflexi increased by 23%, 20%, and 5%, respectively, indicating their higher adaptability to toxic metals. Furthermore, microbial carbon and nitrogen metabolism were also affected by the presence of toxic metals. FAPROTAX analysis demonstrated an abundant reduction of ecologically functional groups associated with carbon and nitrogen transformations under high toxic metal pollution levels. KEGG pathway analysis indicated that carbon fixation and nitrogen metabolism pathways were inhibited with increasing toxic metal concentrations. These findings would contribute to a better understanding of the effects of toxic metal pollution on sediment microbial communities and function, shedding light on the ecological consequences of toxic metal contamination.
Collapse
Affiliation(s)
- Tao Song
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621000, People's Republic of China
| | - Weiguo Tu
- Sichuan Provincial Academy of Natural Resource Sciences, Sichuan, 610015, People's Republic of China
| | - Shu Chen
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621000, People's Republic of China.
| | - Min Fan
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621000, People's Republic of China
| | - Liang Jia
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621000, People's Republic of China
| | - Bin Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621000, People's Republic of China
| | - Yuankun Yang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621000, People's Republic of China
| | - Sen Li
- Sichuan Provincial Academy of Natural Resource Sciences, Sichuan, 610015, People's Republic of China
| | - Xuemei Luo
- Sichuan Provincial Academy of Natural Resource Sciences, Sichuan, 610015, People's Republic of China
| | - Mingyue Su
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621000, People's Republic of China
| | - Jingjing Guo
- Sichuan Provincial Academy of Natural Resource Sciences, Sichuan, 610015, People's Republic of China
| |
Collapse
|
4
|
Li D, Zhang X, Chen J, Li J. Toxicity factors to assess the ecological risk for soil microbial communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115867. [PMID: 38142592 DOI: 10.1016/j.ecoenv.2023.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
The toxicity factor (TF), a critical parameter within the potential ecological risk index (RI), is determined without accounting for microbial factors. It is considerable uncertainty exists concerning its validity for quantitatively assessing the influence of metal(loid)s on microorganisms. To evaluate the suitability of TF, we constructed microcosm experiments with varying RI levels (RI = 100, 200, 300, 500, and 700) by externally adding zinc (Zn), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), cadmium (Cd), and mercury (Hg) to uncontaminated soil (CK). Quantitative real-time PCR (qPCR) and high-throughput sequencing techniques were employed to measure the abundance and community of bacteria and fungi, and high-throughput qPCR was utilised to quantify functional genes associated with CNPS cycles. The results demonstrated that microbial diversity and function exhibited significant alterations (p < 0.05) in response to increasing RI levels, and the influences on microbial community structure, enzyme activity, and functional gene abundances were different due to the types of metal(loid)s treatments. At the same RI level, significant differences (p < 0.05) were discerned in microbial diversity and function across metal(loid) treatments, and these differences became more pronounced (p < 0.001) at higher levels. These findings suggest that TF may not be suitable for the quantitative assessment of microbial ecological risk. Therefore, we adjusted the TF by following three steps (1) determining the adjustment criteria, (2) deriving the initial TF, and (3) adjusting and optimizing the TF. Ultimately, the optimal adjusted TF was established as Zn = 1.5, Cr = 4.5, Cu = 6, Pb = 4.5, Ni = 5, Cd = 22, and Hg = 34. Our results provide a new reference for quantitatively assessing the ecological risks caused by metal(loid)s to microorganisms.
Collapse
Affiliation(s)
- Dale Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiujuan Zhang
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jianwen Chen
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Junjian Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
5
|
Radziemska M, Gusiatin MZ, Cydzik-Kwiatkowska A, Blazejczyk A, Majewski G, Jaskulska I, Brtnicky M. Effect of freeze-thaw manipulation on phytostabilization of industrially contaminated soil with halloysite nanotubes. Sci Rep 2023; 13:22175. [PMID: 38092858 PMCID: PMC10719333 DOI: 10.1038/s41598-023-49698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
The latest trends in improving the performance properties of soils contaminated with potentially toxic elements (PTEs) relate to the possibility of using raw additives, including halloysite nanotubes (HNTs) due to eco-friendliness, and inexpensiveness. Lolium perenne L. was cultivated for 52 days in a greenhouse and then moved to a freezing-thawing chamber for 64 days. HNT addition into PTE-contaminated soil cultivated with grass under freezing-thawing conditions (FTC) was tested to demonstrate PTE immobilization during phytostabilization. The relative yields increased by 47% in HNT-enriched soil in a greenhouse, while under FTC decreased by 17% compared to the adequate greenhouse series. The higher PTE accumulation in roots in HNT presence was evident both in greenhouse and chamber conditions. (Cr/Cd and Cu)-relative contents were reduced in soil HNT-enriched-not-FTC-exposed, while (Cr and Cu) in HNT-enriched-FTC-exposed. PTE-immobilization was discernible by (Cd/Cr/Pb and Zn)-redistribution into the reducible fraction and (Cu/Ni and Zn) into the residual fraction in soil HNT-enriched-not-FTC-exposed. FTC and HNT facilitated transformation to the residual fraction mainly for Pb. Based on PTE-distribution patterns and redistribution indexes, HNT's role in increasing PTE stability in soils not-FTC-exposed is more pronounced than in FTC-exposed compared to the adequate series. Sphingomonas, Acidobacterium, and Mycobacterium appeared in all soils. HNTs mitigated FTC's negative effect on microbial diversity and increased Planctomycetia abundance.
Collapse
Affiliation(s)
- Maja Radziemska
- Institute of Environmental Engineering, Warsaw University of Life Sciences, 02-776, Warsaw, Poland.
| | - Mariusz Z Gusiatin
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | | | - Aurelia Blazejczyk
- Institute of Civil Engineering, Warsaw University of Life Sciences, 02-776, Warsaw, Poland
| | - Grzegorz Majewski
- Institute of Environmental Engineering, Warsaw University of Life Sciences, 02-776, Warsaw, Poland
| | - Iwona Jaskulska
- Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 85-796, Bydgoszcz, Poland
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, 613 00, Brno, Czech Republic
| |
Collapse
|
6
|
Martínez-Martínez JG, Rosales-Loredo S, Hernández-Morales A, Arvizu-Gómez JL, Carranza-Álvarez C, Macías-Pérez JR, Rolón-Cárdenas GA, Pacheco-Aguilar JR. Bacterial Communities Associated with the Roots of Typha spp. and Its Relationship in Phytoremediation Processes. Microorganisms 2023; 11:1587. [PMID: 37375088 DOI: 10.3390/microorganisms11061587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Heavy metal pollution is a severe concern worldwide, owing to its harmful effects on ecosystems. Phytoremediation has been applied to remove heavy metals from water, soils, and sediments by using plants and associated microorganisms to restore contaminated sites. The Typha genus is one of the most important genera used in phytoremediation strategies because of its rapid growth rate, high biomass production, and the accumulation of heavy metals in its roots. Plant growth-promoting rhizobacteria have attracted much attention because they exert biochemical activities that improve plant growth, tolerance, and the accumulation of heavy metals in plant tissues. Because of their beneficial effects on plants, some studies have identified bacterial communities associated with the roots of Typha species growing in the presence of heavy metals. This review describes in detail the phytoremediation process and highlights the application of Typha species. Then, it describes bacterial communities associated with roots of Typha growing in natural ecosystems and wetlands contaminated with heavy metals. Data indicated that bacteria from the phylum Proteobacteria are the primary colonizers of the rhizosphere and root-endosphere of Typha species growing in contaminated and non-contaminated environments. Proteobacteria include bacteria that can grow in different environments due to their ability to use various carbon sources. Some bacterial species exert biochemical activities that contribute to plant growth and tolerance to heavy metals and enhance phytoremediation.
Collapse
Affiliation(s)
| | - Stephanie Rosales-Loredo
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí 79060, Mexico
| | - Alejandro Hernández-Morales
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí 79060, Mexico
| | - Jackeline Lizzeta Arvizu-Gómez
- Secretaría de Investigación y Posgrado, Centro Nayarita de Innovación y Transferencia de Tecnología (CENITT), Universidad Autónoma de Nayarit, Tepic 63173, Mexico
| | - Candy Carranza-Álvarez
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí 79060, Mexico
| | - José Roberto Macías-Pérez
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí 79060, Mexico
| | - Gisela Adelina Rolón-Cárdenas
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí 79060, Mexico
| | | |
Collapse
|