1
|
Zhou F, Zhang S, Zhang H, Liu JK. ProCeSa: Contrast-Enhanced Structure-Aware Network for Thermostability Prediction with Protein Language Models. J Chem Inf Model 2025; 65:2304-2313. [PMID: 39988825 PMCID: PMC11898056 DOI: 10.1021/acs.jcim.4c01752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
Proteins play a fundamental role in biology, and their thermostability is essential for their proper functionality. The precise measurement of thermostability is crucial, traditionally relying on resource-intensive experiments. Recent advances in deep learning, particularly in protein language models (PLMs), have significantly accelerated the progress in protein thermostability prediction. These models utilize various biological characteristics or deep representations generated by PLMs to represent the protein sequences. However, effectively incorporating structural information, based on the PLM embeddings, while not considering atomic protein structures, remains an open and formidable challenge. Here, we propose a novel Protein Contrast-enhanced Structure-Aware (ProCeSa) model that seamlessly integrates both sequence and structural information extracted from PLMs to enhance thermostability prediction. Our model employs a contrastive learning scheme guided by the categories of amino acid residues, allowing it to discern intricate patterns within protein sequences. Rigorous experiments conducted on publicly available data sets establish the superiority of our method over state-of-the-art approaches, excelling in both classification and regression tasks. Our results demonstrate that ProCeSa addresses the complex challenge of predicting protein thermostability by utilizing PLM-derived sequence embeddings, without requiring access to atomic structural data.
Collapse
Affiliation(s)
| | - Shuo Zhang
- School
of Computer Science, University of Birmingham, Birmingham B15 2TT, U.K.
| | | | - Jian K. Liu
- School
of Computer Science, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
2
|
Lv Z, Wei M, Pei H, Peng S, Li M, Jiang L. PTSP-BERT: Predict the thermal stability of proteins using sequence-based bidirectional representations from transformer-embedded features. Comput Biol Med 2025; 185:109598. [PMID: 39708499 DOI: 10.1016/j.compbiomed.2024.109598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Thermophilic proteins, mesophiles proteins and psychrophilic proteins have wide industrial applications, as enzymes with different optimal temperatures are often needed for different purposes. Convenient methods are needed to determine the optimal temperatures for proteins; however, laboratory methods for this purpose are time-consuming and laborious, and existing machine learning methods can only perform binary classification of thermophilic and non-thermophilic proteins, or psychrophilic and non-psychrophilic proteins. Here, we developed a deep learning model, PSTP-BERT, based on protein sequences that can directly perform Three classes identification of thermophilic, mesophilic, and psychrophilic proteins. By comparing BERT-bfd with other deep learning models using five-fold cross-validation, we found that BERT-bfd-extracted features achieved the highest accuracy under six classifiers. Furthermore, to improve the model's accuracy, we used SMOTE (synthetic minority oversampling technique) to balance the dataset and light gradient-boosting machine to rank BERT-bfd-extracted features according to their weights. We obtained the best-performing model with five-fold cross-validation accuracy of 89.59 % and independent test accuracy of 85.42 %. The performance of the PSTP-BERT is significantly better than that of existing models in Three classes identification task. In order to compare with previous binary classification models, we used PSTP-BERT to perform binary classification tasks of thermophilic and non-thermophilic protein, and psychrophilic and non-psychrophilic protein on an independent test set. PSTP-BERT achieved the highest accuracy on both binary classification tasks, with an accuracy of 93.33 % for thermophilic protein binary classification and 88.33 % for psychrophilic protein binary classification. The accuracy of the independent test of the model can reach between 89.8 % and 92.9 % after training and optimization of the training set with different sequence similarities, and the prediction accuracy of the new data can exceed 97 %. For the convenience of future researchers to use and reference, we have uploaded source code of PSTP-BERT to GitHub.
Collapse
Affiliation(s)
- Zhibin Lv
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Mingxuan Wei
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongdi Pei
- Department of Biomedical Engineering, Johns Hopkins University, MD, 21218, USA
| | - Shiyu Peng
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingxin Li
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Liangzhen Jiang
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China; Country Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, 610106, China
| |
Collapse
|
3
|
Zhu M, Song Y, Yuan Q, Yang Y. Accurately predicting optimal conditions for microorganism proteins through geometric graph learning and language model. Commun Biol 2024; 7:1709. [PMID: 39739114 DOI: 10.1038/s42003-024-07436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025] Open
Abstract
Proteins derived from microorganisms that survive in the harshest environments on Earth have stable activity under extreme conditions, providing rich resources for industrial applications and enzyme engineering. Due to the time-consuming nature of experimental determinations, it is imperative to develop computational models for fast and accurate prediction of protein optimal conditions. Previous studies were limited by the scarcity of data and the neglect of protein structures. To solve these problems, we constructed an up-to-date dataset with 175,905 non-redundant proteins and proposed a new model GeoPoc based on geometric graph learning for the protein optimal temperature, pH, and salt concentration prediction. GeoPoc leverages protein structures and sequence embeddings extracted from pre-trained language model, and further employs a geometric graph transformer network to capture the sequence and spatial information. We first focused on in-house validation for optimal temperature prediction for robustness assessment, and achieved a PCC of 0.78. The algorithm is further confirmed in an independent test set, where GeoPoc surpasses the state-of-the-art method by 2.3% in AUC. Additionally, GeoPoc was extended to pH and salt concentration prediction, and obtained AUC scores of 0.78 and 0.77, respectively. Through further interpretable analysis, GeoPoc elucidates the critical physicochemical properties that contribute to enhancing protein thermostability.
Collapse
Affiliation(s)
- Mingming Zhu
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yidong Song
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qianmu Yuan
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
- High Performance Computing Department, National Supercomputing Center in Shenzhen, Shenzhen, Guangdong, 518000, China
| | - Yuedong Yang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China.
- Key Laboratory of Machine Intelligence and Advanced Computing, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Zhao C, Yan S, Li J. TPGPred: A Mixed-Feature-Driven Approach for Identifying Thermophilic Proteins Based on GradientBoosting. Int J Mol Sci 2024; 25:11866. [PMID: 39595936 PMCID: PMC11594102 DOI: 10.3390/ijms252211866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Thermophilic proteins maintain their stability and functionality under extreme high-temperature conditions, making them of significant importance in both fundamental biological research and biotechnological applications. In this study, we developed a machine learning-based thermophilic protein GradientBoosting prediction model, TPGPred, designed to predict thermophilic proteins by leveraging a large-scale dataset of both thermophilic and non-thermophilic protein sequences. By combining various machine learning algorithms with feature-engineering methods, we systematically evaluated the classification performance of the model, identifying the optimal feature combinations and classification models. Trained on a large public dataset of 5652 samples, TPGPred achieved an Accuracy score greater than 0.95 and an Area Under the Receiver Operating Characteristic Curve (AUROC) score greater than 0.98 on an independent test set of 627 samples. Our findings offer new insights into the identification and classification of thermophilic proteins and provide a solid foundation for their industrial application development.
Collapse
Affiliation(s)
- Cuihuan Zhao
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China;
| | - Shuan Yan
- Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Jiahang Li
- School of Mathematical Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Ahmed Z, Shahzadi K, Jin Y, Li R, Momanyi BM, Zulfiqar H, Ning L, Lin H. Identification of RNA‐dependent liquid‐liquid phase separation proteins using an artificial intelligence strategy. Proteomics 2024; 24:e2400044. [PMID: 38824664 DOI: 10.1002/pmic.202400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
RNA-dependent liquid-liquid phase separation (LLPS) proteins play critical roles in cellular processes such as stress granule formation, DNA repair, RNA metabolism, germ cell development, and protein translation regulation. The abnormal behavior of these proteins is associated with various diseases, particularly neurodegenerative disorders like amyotrophic lateral sclerosis and frontotemporal dementia, making their identification crucial. However, conventional biochemistry-based methods for identifying these proteins are time-consuming and costly. Addressing this challenge, our study developed a robust computational model for their identification. We constructed a comprehensive dataset containing 137 RNA-dependent and 606 non-RNA-dependent LLPS protein sequences, which were then encoded using amino acid composition, composition of K-spaced amino acid pairs, Geary autocorrelation, and conjoined triad methods. Through a combination of correlation analysis, mutual information scoring, and incremental feature selection, we identified an optimal feature subset. This subset was used to train a random forest model, which achieved an accuracy of 90% when tested against an independent dataset. This study demonstrates the potential of computational methods as efficient alternatives for the identification of RNA-dependent LLPS proteins. To enhance the accessibility of the model, a user-centric web server has been established and can be accessed via the link: http://rpp.lin-group.cn.
Collapse
Affiliation(s)
- Zahoor Ahmed
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China
| | - Kiran Shahzadi
- Department of Biotechnology, Women University of Azad Jammu and Kashmir Bagh, Bagh, Azad Kashmir, Pakistan
| | - Yanting Jin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Rui Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Biffon Manyura Momanyi
- School of Computer Science and Engineering, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hasan Zulfiqar
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China
| | - Lin Ning
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Hao Lin
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Qi D, Song C, Liu T. PreDBP-PLMs: Prediction of DNA-binding proteins based on pre-trained protein language models and convolutional neural networks. Anal Biochem 2024; 694:115603. [PMID: 38986796 DOI: 10.1016/j.ab.2024.115603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/15/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
The recognition of DNA-binding proteins (DBPs) is the crucial step to understanding their roles in various biological processes such as genetic regulation, gene expression, cell cycle control, DNA repair, and replication within cells. However, conventional experimental methods for identifying DBPs are usually time-consuming and expensive. Therefore, there is an urgent need to develop rapid and efficient computational methods for the prediction of DBPs. In this study, we proposed a novel predictor named PreDBP-PLMs to further improve the identification accuracy of DBPs by fusing the pre-trained protein language model (PLM) ProtT5 embedding with evolutionary features as input to the classic convolutional neural network (CNN) model. Firstly, the ProtT5 embedding was combined with different evolutionary features derived from the position-specific scoring matrix (PSSM) to represent protein sequences. Then, the optimal feature combination was selected and input to the CNN classifier for the prediction of DBPs. Finally, the 5-fold cross-validation (CV), the leave-one-out CV (LOOCV), and the independent set test were adopted to examine the performance of PreDBP-PLMs on the benchmark datasets. Compared to the existing state-of-the-art predictors, PreDBP-PLMs exhibits an accuracy improvement of 0.5 % and 5.2 % on the PDB186 and PDB2272 datasets, respectively. It demonstrated that the proposed method could serve as a useful tool for the recognition of DBPs.
Collapse
Affiliation(s)
- Dawei Qi
- College of Information Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Chen Song
- College of Information Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Taigang Liu
- College of Information Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
7
|
Susanty M, Mursalim MKN, Hertadi R, Purwarianti A, LE Rajab T. Leveraging protein language model embeddings and logistic regression for efficient and accurate in-silico acidophilic proteins classification. Comput Biol Chem 2024; 112:108163. [PMID: 39098138 DOI: 10.1016/j.compbiolchem.2024.108163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
The increasing demand for eco-friendly technologies in biotechnology necessitates effective and sustainable catalysts. Acidophilic proteins, functioning optimally in highly acidic environments, hold immense promise for various applications, including food production, biofuels, and bioremediation. However, limited knowledge about these proteins hinders their exploration. This study addresses this gap by employing in silico methods utilizing computational tools and machine learning. We propose a novel approach to predict acidophilic proteins using protein language models (PLMs), accelerating discovery without extensive lab work. Our investigation highlights the potential of PLMs in understanding and harnessing acidophilic proteins for scientific and industrial advancements. We introduce the ACE model, which combines a simple Logistic Regression model with embeddings derived from protein sequences processed by the ProtT5 PLM. This model achieves high performance on an independent test set, with accuracy (0.91), F1-score (0.93), and Matthew's correlation coefficient (0.76). To our knowledge, this is the first application of pre-trained PLM embeddings for acidophilic protein classification. The ACE model serves as a powerful tool for exploring protein acidophilicity, paving the way for future advancements in protein design and engineering.
Collapse
Affiliation(s)
- Meredita Susanty
- Institut Teknologi Bandung School of Electrical Engineering and Informatics, Jl. Ganesa 10, Bandung, Jawa Barat, Indonesia; Universitas Pertamina, School of Computer Science, Jl Teuku Nyak Arief Jakarta Selatan DKI, Jakarta, Indonesia
| | - Muhammad Khaerul Naim Mursalim
- Institut Teknologi Bandung School of Electrical Engineering and Informatics, Jl. Ganesa 10, Bandung, Jawa Barat, Indonesia; Universitas UniversalKompleks Maha Vihara Duta Maitreya Bukit Beruntung, Sei Panas Batam, Kepulauan, Riau 29456, Indonesia
| | - Rukman Hertadi
- Institut Teknologi Bandung Faculty of Math and Natural Sciences, Jl. Ganesa 10, Bandung, Jawa Barat, Indonesia
| | - Ayu Purwarianti
- Institut Teknologi Bandung School of Electrical Engineering and Informatics, Jl. Ganesa 10, Bandung, Jawa Barat, Indonesia; Center for Artificial Intelligence (U-CoE AI-VLB), Institut Teknologi Bandung, Bandung, Indonesia
| | - Tati LE Rajab
- Institut Teknologi Bandung School of Electrical Engineering and Informatics, Jl. Ganesa 10, Bandung, Jawa Barat, Indonesia.
| |
Collapse
|
8
|
Ahmed Z, Shahzadi K, Temesgen SA, Ahmad B, Chen X, Ning L, Zulfiqar H, Lin H, Jin YT. A protein pre-trained model-based approach for the identification of the liquid-liquid phase separation (LLPS) proteins. Int J Biol Macromol 2024; 277:134146. [PMID: 39067723 DOI: 10.1016/j.ijbiomac.2024.134146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/06/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Liquid-liquid phase separation (LLPS) regulates many biological processes including RNA metabolism, chromatin rearrangement, and signal transduction. Aberrant LLPS potentially leads to serious diseases. Therefore, the identification of the LLPS proteins is crucial. Traditionally, biochemistry-based methods for identifying LLPS proteins are costly, time-consuming, and laborious. In contrast, artificial intelligence-based approaches are fast and cost-effective and can be a better alternative to biochemistry-based methods. Previous research methods employed word2vec in conjunction with machine learning or deep learning algorithms. Although word2vec captures word semantics and relationships, it might not be effective in capturing features relevant to protein classification, like physicochemical properties, evolutionary relationships, or structural features. Additionally, other studies often focused on a limited set of features for model training, including planar π contact frequency, pi-pi, and β-pairing propensities. To overcome such shortcomings, this study first constructed a reliable dataset containing 1206 protein sequences, including 603 LLPS and 603 non-LLPS protein sequences. Then a computational model was proposed to efficiently identify the LLPS proteins by perceiving semantic information of protein sequences directly; using an ESM2-36 pre-trained model based on transformer architecture in conjunction with a convolutional neural network. The model could achieve an accuracy of 85.68% and 89.67%, respectively on training data and test data, surpassing the accuracy of previous studies. The performance demonstrates the potential of our computational methods as efficient alternatives for identifying LLPS proteins.
Collapse
Affiliation(s)
- Zahoor Ahmed
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China.
| | - Kiran Shahzadi
- Department of Biotechnology, Women University of Azad Jammu and Kashmir, Bagh, Azad Kashmir, Pakistan.
| | - Sebu Aboma Temesgen
- School of Life Science and Technology, University of Electronic Science and Technology of China, 611731 Chengdu, China.
| | - Basharat Ahmad
- School of Life Science and Technology, University of Electronic Science and Technology of China, 611731 Chengdu, China.
| | - Xiang Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China.
| | - Lin Ning
- School of Life Science and Technology, University of Electronic Science and Technology of China, 611731 Chengdu, China; School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China.
| | - Hasan Zulfiqar
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China.
| | - Hao Lin
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China.
| | - Yan-Ting Jin
- School of Life Science and Technology, University of Electronic Science and Technology of China, 611731 Chengdu, China.
| |
Collapse
|
9
|
Bernett J, Blumenthal DB, Grimm DG, Haselbeck F, Joeres R, Kalinina OV, List M. Guiding questions to avoid data leakage in biological machine learning applications. Nat Methods 2024; 21:1444-1453. [PMID: 39122953 DOI: 10.1038/s41592-024-02362-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/26/2024] [Indexed: 08/12/2024]
Abstract
Machine learning methods for extracting patterns from high-dimensional data are very important in the biological sciences. However, in certain cases, real-world applications cannot confirm the reported prediction performance. One of the main reasons for this is data leakage, which can be seen as the illicit sharing of information between the training data and the test data, resulting in performance estimates that are far better than the performance observed in the intended application scenario. Data leakage can be difficult to detect in biological datasets due to their complex dependencies. With this in mind, we present seven questions that should be asked to prevent data leakage when constructing machine learning models in biological domains. We illustrate the usefulness of our questions by applying them to nontrivial examples. Our goal is to raise awareness of potential data leakage problems and to promote robust and reproducible machine learning-based research in biology.
Collapse
Affiliation(s)
- Judith Bernett
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - David B Blumenthal
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Dominik G Grimm
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany.
- Bioinformatics, Weihenstephan-Triesdorf University of Applied Sciences, Straubing, Germany.
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
| | - Florian Haselbeck
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- Bioinformatics, Weihenstephan-Triesdorf University of Applied Sciences, Straubing, Germany
- Smart Farming, Weihenstephan-Triesdorf University of Applied Sciences, Freising, Germany
| | - Roman Joeres
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Olga V Kalinina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany.
- Medical Faculty, Saarland University, Homburg, Germany.
| | - Markus List
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
- Munich Data Science Institute (MDSI), Technical University of Munich, Garching, Germany.
| |
Collapse
|
10
|
Rodella C, Lazaridi S, Lemmin T. TemBERTure: advancing protein thermostability prediction with deep learning and attention mechanisms. BIOINFORMATICS ADVANCES 2024; 4:vbae103. [PMID: 39040220 PMCID: PMC11262459 DOI: 10.1093/bioadv/vbae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Motivation Understanding protein thermostability is essential for numerous biotechnological applications, but traditional experimental methods are time-consuming, expensive, and error-prone. Recently, deep learning (DL) techniques from natural language processing (NLP) was extended to the field of biology, since the primary sequence of proteins can be viewed as a string of amino acids that follow a physicochemical grammar. Results In this study, we developed TemBERTure, a DL framework that predicts thermostability class and melting temperature from protein sequences. Our findings emphasize the importance of data diversity for training robust models, especially by including sequences from a wider range of organisms. Additionally, we suggest using attention scores from Deep Learning models to gain deeper insights into protein thermostability. Analyzing these scores in conjunction with the 3D protein structure can enhance understanding of the complex interactions among amino acid properties, their positioning, and the surrounding microenvironment. By addressing the limitations of current prediction methods and introducing new exploration avenues, this research paves the way for more accurate and informative protein thermostability predictions, ultimately accelerating advancements in protein engineering. Availability and implementation TemBERTure model and the data are available at: https://github.com/ibmm-unibe-ch/TemBERTure.
Collapse
Affiliation(s)
- Chiara Rodella
- Institute of Biochemistry and Molecular Medicine (IBMM), University of Bern, Bern CH-3012, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern CH-3012, Switzerland
| | - Symela Lazaridi
- Institute of Biochemistry and Molecular Medicine (IBMM), University of Bern, Bern CH-3012, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern CH-3012, Switzerland
| | - Thomas Lemmin
- Institute of Biochemistry and Molecular Medicine (IBMM), University of Bern, Bern CH-3012, Switzerland
| |
Collapse
|
11
|
Yu H, Luo X. ThermoFinder: A sequence-based thermophilic proteins prediction framework. Int J Biol Macromol 2024; 270:132469. [PMID: 38761901 DOI: 10.1016/j.ijbiomac.2024.132469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Thermophilic proteins are important for academic research and industrial processes, and various computational methods have been developed to identify and screen them. However, their performance has been limited due to the lack of high-quality labeled data and efficient models for representing protein. Here, we proposed a novel sequence-based thermophilic proteins prediction framework, called ThermoFinder. The results demonstrated that ThermoFinder outperforms previous state-of-the-art tools on two benchmark datasets, and feature ablation experiments confirmed the effectiveness of our approach. Additionally, ThermoFinder exhibited exceptional performance and consistency across two newly constructed datasets, one of these was specifically constructed for the regression-based prediction of temperature optimum values directly derived from protein sequences. The feature importance analysis, using shapley additive explanations, further validated the advantages of ThermoFinder. We believe that ThermoFinder will be a valuable and comprehensive framework for predicting thermophilic proteins, and we have made our model open source and available on Github at https://github.com/Luo-SynBioLab/ThermoFinder.
Collapse
Affiliation(s)
- Han Yu
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaozhou Luo
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
12
|
Pudžiuvelytė I, Olechnovič K, Godliauskaite E, Sermokas K, Urbaitis T, Gasiunas G, Kazlauskas D. TemStaPro: protein thermostability prediction using sequence representations from protein language models. Bioinformatics 2024; 40:btae157. [PMID: 38507682 PMCID: PMC11001493 DOI: 10.1093/bioinformatics/btae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024] Open
Abstract
MOTIVATION Reliable prediction of protein thermostability from its sequence is valuable for both academic and industrial research. This prediction problem can be tackled using machine learning and by taking advantage of the recent blossoming of deep learning methods for sequence analysis. These methods can facilitate training on more data and, possibly, enable the development of more versatile thermostability predictors for multiple ranges of temperatures. RESULTS We applied the principle of transfer learning to predict protein thermostability using embeddings generated by protein language models (pLMs) from an input protein sequence. We used large pLMs that were pre-trained on hundreds of millions of known sequences. The embeddings from such models allowed us to efficiently train and validate a high-performing prediction method using over one million sequences that we collected from organisms with annotated growth temperatures. Our method, TemStaPro (Temperatures of Stability for Proteins), was used to predict thermostability of CRISPR-Cas Class II effector proteins (C2EPs). Predictions indicated sharp differences among groups of C2EPs in terms of thermostability and were largely in tune with previously published and our newly obtained experimental data. AVAILABILITY AND IMPLEMENTATION TemStaPro software and the related data are freely available from https://github.com/ievapudz/TemStaPro and https://doi.org/10.5281/zenodo.7743637.
Collapse
Affiliation(s)
- Ieva Pudžiuvelytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Institute of Computer Science, Faculty of Mathematics and Informatics, Vilnius University, LT-08303 Vilnius, Lithuania
| | - Kliment Olechnovič
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | | | | | | | - Giedrius Gasiunas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- CasZyme, LT-10257 Vilnius, Lithuania
| | - Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
13
|
Haselbeck F, John M, Zhang Y, Pirnay J, Fuenzalida-Werner J, Costa R, Grimm D. Superior protein thermophilicity prediction with protein language model embeddings. NAR Genom Bioinform 2023; 5:lqad087. [PMID: 37829176 PMCID: PMC10566323 DOI: 10.1093/nargab/lqad087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Protein thermostability is important in many areas of biotechnology, including enzyme engineering and protein-hybrid optoelectronics. Ever-growing protein databases and information on stability at different temperatures allow the training of machine learning models to predict whether proteins are thermophilic. In silico predictions could reduce costs and accelerate the development process by guiding researchers to more promising candidates. Existing models for predicting protein thermophilicity rely mainly on features derived from physicochemical properties. Recently, modern protein language models that directly use sequence information have demonstrated superior performance in several tasks. In this study, we evaluate the usefulness of protein language model embeddings for thermophilicity prediction with ProLaTherm, a Protein Language model-based Thermophilicity predictor. ProLaTherm significantly outperforms all feature-, sequence- and literature-based comparison partners on multiple evaluation metrics. In terms of the Matthew's correlation coefficient, ProLaTherm outperforms the second-best competitor by 18.1% in a nested cross-validation setup. Using proteins from species not overlapping with species from the training data, ProLaTherm outperforms all competitors by at least 9.7%. On these data, it misclassified only one nonthermophilic protein as thermophilic. Furthermore, it correctly identified 97.4% of all thermophilic proteins in our test set with an optimal growth temperature above 70°C.
Collapse
Affiliation(s)
- Florian Haselbeck
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Bioinformatics, 94315 Straubing, Germany
- Weihenstephan-Triesdorf University of Applied Sciences, Bioinformatics, 94315 Straubing, Germany
| | - Maura John
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Bioinformatics, 94315 Straubing, Germany
- Weihenstephan-Triesdorf University of Applied Sciences, Bioinformatics, 94315 Straubing, Germany
| | - Yuqi Zhang
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Bioinformatics, 94315 Straubing, Germany
| | - Jonathan Pirnay
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Bioinformatics, 94315 Straubing, Germany
- Weihenstephan-Triesdorf University of Applied Sciences, Bioinformatics, 94315 Straubing, Germany
| | - Juan Pablo Fuenzalida-Werner
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Chair of Biogenic Functional Materials, 94315 Straubing, Germany
| | - Rubén D Costa
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Chair of Biogenic Functional Materials, 94315 Straubing, Germany
| | - Dominik G Grimm
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Bioinformatics, 94315 Straubing, Germany
- Weihenstephan-Triesdorf University of Applied Sciences, Bioinformatics, 94315 Straubing, Germany
- Technical University of Munich, TUM School of Computation, Information and Technology (CIT), 85748 Garching, Germany
| |
Collapse
|
14
|
Wan H, Zhang Y, Huang S. Prediction of thermophilic protein using 2-D general series correlation pseudo amino acid features. Methods 2023; 218:141-148. [PMID: 37604248 DOI: 10.1016/j.ymeth.2023.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/08/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023] Open
Abstract
The demand for thermophilic protein has been increasing in protein engineering recently. Many machine-learning methods for identifying thermophilic proteins have emerged during this period. However, most machine learning-based thermophilic protein identification studies have only focused on accuracy. The relationship between the features' meaning and the proteins' physicochemical properties has yet to be studied in depth. In this article, we focused on the relationship between the features and the thermal stability of thermophilic proteins. This method used 2-D general series correlation pseudo amino acid (SC-PseAAC-General) features and realized accuracy of 82.76% using the J48 classifier. In addition, this research found the presence of higher frequencies of glutamic acid in thermophilic proteins, which help thermophilic proteins maintain their thermal stability by forming hydrogen bonds and salt bridges that prevent denaturation at high temperatures.
Collapse
Affiliation(s)
- Hao Wan
- College of Life Science, Qingdao University, Qingdao 266071, China.
| | - Yanan Zhang
- College of Life Science, Qingdao University, Qingdao 266071, China
| | - Shibo Huang
- Beidahuang Industry Group General Hospital, Harbin 150001, China
| |
Collapse
|
15
|
Zhu W, Yuan SS, Li J, Huang CB, Lin H, Liao B. A First Computational Frame for Recognizing Heparin-Binding Protein. Diagnostics (Basel) 2023; 13:2465. [PMID: 37510209 PMCID: PMC10377868 DOI: 10.3390/diagnostics13142465] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Heparin-binding protein (HBP) is a cationic antibacterial protein derived from multinuclear neutrophils and an important biomarker of infectious diseases. The correct identification of HBP is of great significance to the study of infectious diseases. This work provides the first HBP recognition framework based on machine learning to accurately identify HBP. By using four sequence descriptors, HBP and non-HBP samples were represented by discrete numbers. By inputting these features into a support vector machine (SVM) and random forest (RF) algorithm and comparing the prediction performances of these methods on training data and independent test data, it is found that the SVM-based classifier has the greatest potential to identify HBP. The model could produce an auROC of 0.981 ± 0.028 on training data using 10-fold cross-validation and an overall accuracy of 95.0% on independent test data. As the first model for HBP recognition, it will provide some help for infectious diseases and stimulate further research in related fields.
Collapse
Affiliation(s)
- Wen Zhu
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou 571158, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou 571158, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
| | - Shi-Shi Yuan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Cheng-Bing Huang
- School of Computer Science and Technology, ABa Teachers University, Chengdu 623002, China
| | - Hao Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bo Liao
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou 571158, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou 571158, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
16
|
Dou Z, Sun Y, Jiang X, Wu X, Li Y, Gong B, Wang L. Data-driven strategies for the computational design of enzyme thermal stability: trends, perspectives, and prospects. Acta Biochim Biophys Sin (Shanghai) 2023; 55:343-355. [PMID: 37143326 PMCID: PMC10160227 DOI: 10.3724/abbs.2023033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/23/2022] [Indexed: 03/05/2023] Open
Abstract
Thermal stability is one of the most important properties of enzymes, which sustains life and determines the potential for the industrial application of biocatalysts. Although traditional methods such as directed evolution and classical rational design contribute greatly to this field, the enormous sequence space of proteins implies costly and arduous experiments. The development of enzyme engineering focuses on automated and efficient strategies because of the breakthrough of high-throughput DNA sequencing and machine learning models. In this review, we propose a data-driven architecture for enzyme thermostability engineering and summarize some widely adopted datasets, as well as machine learning-driven approaches for designing the thermal stability of enzymes. In addition, we present a series of existing challenges while applying machine learning in enzyme thermostability design, such as the data dilemma, model training, and use of the proposed models. Additionally, a few promising directions for enhancing the performance of the models are discussed. We anticipate that the efficient incorporation of machine learning can provide more insights and solutions for the design of enzyme thermostability in the coming years.
Collapse
Affiliation(s)
- Zhixin Dou
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| | - Yuqing Sun
- School of SoftwareShandong UniversityJinan250101China
| | - Xukai Jiang
- National Glycoengineering Research CenterShandong UniversityQingdao266237China
| | - Xiuyun Wu
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| | - Yingjie Li
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| | - Bin Gong
- School of SoftwareShandong UniversityJinan250101China
| | - Lushan Wang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| |
Collapse
|
17
|
Zulfiqar H, Guo Z, Grace-Mercure BK, Zhang ZY, Gao H, Lin H, Wu Y. Empirical comparison and recent advances of computational prediction of hormone binding proteins using machine learning methods. Comput Struct Biotechnol J 2023; 21:2253-2261. [PMID: 37035551 PMCID: PMC10073991 DOI: 10.1016/j.csbj.2023.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Hormone binding proteins (HBPs) belong to the group of soluble carrier proteins. These proteins selectively and non-covalently interact with hormones and promote growth hormone signaling in human and other animals. The HBPs are useful in many medical and commercial fields. Thus, the identification of HBPs is very important because it can help to discover more details about hormone binding proteins. Meanwhile, the experimental methods are time-consuming and expensive for hormone binding proteins recognition. Computational prediction methods have played significant roles in the correct recognition of hormone binding proteins with the use of sequence information and ML algorithms. In this review, we compared and assessed the implementation of ML-based tools in recognition of HBPs in a unique way. We hope that this study will give enough awareness and knowledge for research on HBPs.
Collapse
Affiliation(s)
- Hasan Zulfiqar
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, China
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhiling Guo
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Bakanina Kissanga Grace-Mercure
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhao-Yue Zhang
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui Gao
- School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hao Lin
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, China
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yun Wu
- College of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China
| |
Collapse
|
18
|
Huang A, Lu F, Liu F. Discrimination of psychrophilic enzymes using machine learning algorithms with amino acid composition descriptor. Front Microbiol 2023; 14:1130594. [PMID: 36860491 PMCID: PMC9968940 DOI: 10.3389/fmicb.2023.1130594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Psychrophilic enzymes are a class of macromolecules with high catalytic activity at low temperatures. Cold-active enzymes possessing eco-friendly and cost-effective properties, are of huge potential application in detergent, textiles, environmental remediation, pharmaceutical as well as food industry. Compared with the time-consuming and labor-intensive experiments, computational modeling especially the machine learning (ML) algorithm is a high-throughput screening tool to identify psychrophilic enzymes efficiently. Methods In this study, the influence of 4 ML methods (support vector machines, K-nearest neighbor, random forest, and naïve Bayes), and three descriptors, i.e., amino acid composition (AAC), dipeptide combinations (DPC), and AAC + DPC on the model performance were systematically analyzed. Results and discussion Among the 4 ML methods, the support vector machine model based on the AAC descriptor using 5-fold cross-validation achieved the best prediction accuracy with 80.6%. The AAC outperformed than the DPC and AAC + DPC descriptors regardless of the ML methods used. In addition, amino acid frequencies between psychrophilic and non-psychrophilic proteins revealed that higher frequencies of Ala, Gly, Ser, and Thr, and lower frequencies of Glu, Lys, Arg, Ile,Val, and Leu could be related to the protein psychrophilicity. Further, ternary models were also developed that could classify psychrophilic, mesophilic, and thermophilic proteins effectively. The predictive accuracy of the ternary classification model using AAC descriptor via the support vector machine algorithm was 75.8%. These findings would enhance our insight into the cold-adaption mechanisms of psychrophilic proteins and aid in the design of engineered cold-active enzymes. Moreover, the proposed model could be used as a screening tool to identify novel cold-adapted proteins.
Collapse
Affiliation(s)
- Ailan Huang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin, China
| | - Fufeng Liu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin, China,*Correspondence: Fufeng Liu, ✉ ;
| |
Collapse
|
19
|
Zhao J, Yan W, Yang Y. DeepTP: A Deep Learning Model for Thermophilic Protein Prediction. Int J Mol Sci 2023; 24:ijms24032217. [PMID: 36768540 PMCID: PMC9917291 DOI: 10.3390/ijms24032217] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Thermophilic proteins have important value in the fields of biopharmaceuticals and enzyme engineering. Most existing thermophilic protein prediction models are based on traditional machine learning algorithms and do not fully utilize protein sequence information. To solve this problem, a deep learning model based on self-attention and multiple-channel feature fusion was proposed to predict thermophilic proteins, called DeepTP. First, a large new dataset consisting of 20,842 proteins was constructed. Second, a convolutional neural network and bidirectional long short-term memory network were used to extract the hidden features in protein sequences. Different weights were then assigned to features through self-attention, and finally, biological features were integrated to build a prediction model. In a performance comparison with existing methods, DeepTP had better performance and scalability in an independent balanced test set and validation set, with AUC values of 0.944 and 0.801, respectively. In the unbalanced test set, DeepTP had an average precision (AP) of 0.536. The tool is freely available.
Collapse
Affiliation(s)
- Jianjun Zhao
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
- Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210000, China
| | - Wenying Yan
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China
- Center for Systems Biology, Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Suzhou 215123, China
- Correspondence: (W.Y.); (Y.Y.)
| | - Yang Yang
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
- Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210000, China
- Correspondence: (W.Y.); (Y.Y.)
| |
Collapse
|
20
|
A Statistical Analysis of the Sequence and Structure of Thermophilic and Non-Thermophilic Proteins. Int J Mol Sci 2022; 23:ijms231710116. [PMID: 36077513 PMCID: PMC9456548 DOI: 10.3390/ijms231710116] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Thermophilic proteins have various practical applications in theoretical research and in industry. In recent years, the demand for thermophilic proteins on an industrial scale has been increasing; therefore, the engineering of thermophilic proteins has become a hot direction in the field of protein engineering. However, the exact mechanism of thermostability of proteins is not yet known, for engineering thermophilic proteins knowing the basis of thermostability is necessary. In order to understand the basis of the thermostability in proteins, we have made a statistical analysis of the sequences, secondary structures, hydrogen bonds, salt bridges, DHA (Donor-Hydrogen-Accepter) angles, and bond lengths of ten pairs of thermophilic proteins and their non-thermophilic orthologous. Our findings suggest that polar amino acids contribute to thermostability in proteins by forming hydrogen bonds and salt bridges which provide resistance against protein denaturation. Short bond length and a wider DHA angle provide greater bond stability in thermophilic proteins. Moreover, the increased frequency of aromatic amino acids in thermophilic proteins contributes to thermal stability by forming more aromatic interactions. Additionally, the coil, helix, and loop in the secondary structure also contribute to thermostability.
Collapse
|