1
|
Sagar A, Rai S, Sharma S, Perveen K, Bukhari NA, Sayyed RZ, Mastinu A. Molecular Characterization Reveals Biodiversity and Biopotential of Rhizobacterial Isolates of Bacillus Spp. MICROBIAL ECOLOGY 2024; 87:83. [PMID: 38888737 PMCID: PMC11189325 DOI: 10.1007/s00248-024-02397-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Bacillus species appearas the most attractive plant growth-promoting rhizobacteria (PGPR) and alternative to synthetic chemical pesticides. The present study examined the antagonistic potential of spore forming-Bacilli isolated from organic farm soil samples of Allahabad, India. Eighty-seven Bacillus strains were isolated and characterized based on their morphological, plant growth promoting traits and molecular characteristics. The diversity analysis used 16S-rDNA, BOX-element, and enterobacterial repetitive intergenic consensus. Two strains, PR30 and PR32, later identified as Bacillus sp., exhibited potent in vitro antagonistic activity against Ralstonia solanaceorum. These isolates produced copious amounts of multiple PGP traits, such as indole-3-acetic acid (40.0 and 54.5 μg/mL), phosphate solubilization index (PSI) (4.4 and 5.3), ammonia, siderophore (3 and 4 cm), and 1-aminocyclopropane-1-carboxylate deaminase (8.1and 9.2 μM/mg//h) and hydrogen cyanide. These isolates were subjected to the antibiotic sensitivity test. The two potent isolates based on the higher antagonistic and the best plant growth-promoting ability were selected for plant growth-promoting response studies in tomatoe, broccoli, and chickpea. In the pot study, Bacillus subtilis (PR30 and PR31) showed significant improvement in seed germination (27-34%), root length (20-50%), shoot length (20-40%), vigor index (50-75%), carotenoid content (0.543-1.733), and lycopene content (2.333-2.646 mg/100 g) in tomato, broccoli, and chickpea. The present study demonstrated the production of multiple plant growth-promoting traits by the isolates and their potential as effective bioinoculants for plant growth promotion and biocontrol of phytopathogens.
Collapse
Affiliation(s)
- Alka Sagar
- Department of Microbiology and Biotechnology, Meerut Institute of Engineering and Technology, Meerut, India.
- Department of Industrial Microbiology, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India.
| | - Shalini Rai
- Department of Industrial Microbiology, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India
- Department of Biotechnology, SHEPA, Varanasi, India
| | - Sonia Sharma
- Department of Microbiology and Biotechnology, Meerut Institute of Engineering and Technology, Meerut, India
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box-22452, 11495, Riyadh, Saudi Arabia
| | - Najat A Bukhari
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box-22452, 11495, Riyadh, Saudi Arabia
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's S. I. Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada, 425409, India.
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia.
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123, Brescia, Italy.
| |
Collapse
|
2
|
Jin T, Ren J, Bai B, Wu W, Cao Y, Meng J, Zhang L. Effects of Klebsiella michiganensis LDS17 on Codonopsis pilosula growth, rhizosphere soil enzyme activities, and microflora, and genome-wide analysis of plant growth-promoting genes. Microbiol Spectr 2024; 12:e0405623. [PMID: 38563743 PMCID: PMC11064500 DOI: 10.1128/spectrum.04056-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Codonopsis pilosula is a perennial herbaceous liana with medicinal value. It is critical to promote Codonopsis pilosula growth through effective and sustainable methods, and the use of plant growth-promoting bacteria (PGPB) is a promising candidate. In this study, we isolated a PGPB, Klebsiella michiganensis LDS17, that produced a highly active 1-aminocyclopropane-1-carboxylate deaminase from the Codonopsis pilosula rhizosphere. The strain exhibited multiple plant growth-promoting properties. The antagonistic activity of strain LDS17 against eight phytopathogenic fungi was investigated, and the results showed that strain LDS17 had obvious antagonistic effects on Rhizoctonia solani, Colletotrichum camelliae, Cytospora chrysosperma, and Phomopsis macrospore with growth inhibition rates of 54.22%, 49.41%, 48.89%, and 41.11%, respectively. Inoculation of strain LDS17 not only significantly increased the growth of Codonopsis pilosula seedlings but also increased the invertase and urease activities, the number of culturable bacteria, actinomycetes, and fungi, as well as the functional diversity of microbial communities in the rhizosphere soil of the seedlings. Heavy metal (HM) resistance tests showed that LDS17 is resistant to copper, zinc, and nickel. Whole-genome analysis of strain LDS17 revealed the genes involved in IAA production, siderophore synthesis, nitrogen fixation, P solubilization, and HM resistance. We further identified a gene (koyR) encoding a plant-responsive LuxR solo in the LDS17 genome. Klebsiella michiganensis LDS17 may therefore be useful in microbial fertilizers for Codonopsis pilosula. The identification of genes related to plant growth and HM resistance provides an important foundation for future analyses of the molecular mechanisms underlying the plant growth promotion and HM resistance of LDS17. IMPORTANCE We comprehensively evaluated the plant growth-promoting characteristics and heavy metal (HM) resistance ability of the LDS17 strain, as well as the effects of strain LDS17 inoculation on the Codonopsis pilosula seedling growth and the soil qualities in the Codonopsis pilosula rhizosphere. We conducted whole-genome analysis and identified lots of genes and gene clusters contributing to plant-beneficial functions and HM resistance, which is critical for further elucidating the plant growth-promoting mechanism of strain LDS17 and expanding its application in the development of plant growth-promoting agents used in the environment under HM stress.
Collapse
Affiliation(s)
- Tingting Jin
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Jiahong Ren
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Bianxia Bai
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Wei Wu
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Yongqing Cao
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Jing Meng
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Lihui Zhang
- Department of Life Sciences, Changzhi University, Changzhi, China
| |
Collapse
|
3
|
Shi W, Li J, Xie S, Wang X, Zhang Y, Yao H, Chen M, Li J, Deng Z. Selection of the Dominant Endophytes Based on Illumina Sequencing Analysis for Controlling Bacterial Wilt of Patchouli Caused by Ralstonia solanacearum. PLANT DISEASE 2024; 108:996-1004. [PMID: 38613135 DOI: 10.1094/pdis-09-23-1722-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Bacterial wilt caused by Ralstonia solanacearum (RS) is one of the most devastating diseases in patchouli (Pogostemon cablin [Blanco] Benth.), which results in low yield and quality of patchouli. However, no stable and effective control methods have been developed yet. To evaluate the potential of dominant bacterial endophytes in biocontrol, the endophytic bacterial diversity of patchouli was investigated based on Illumina sequencing analysis, and the ability of isolates belonging to the dominant bacterial genera to control RS wilt of patchouli was explored in pot experiments. A total of 245 bacterial genera were detected in patchouli plants, with the highest relative abundance of operational taxonomic units belonging to the genus Pseudomonas detected in roots, leaves, and stems. The Pseudomonas isolates S02, S09, and S26 showed antagonistic activity against RS in vitro and displayed many plant growth-promoting characteristics, including production of indole-3-acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylic acid deaminase and phosphate- and potassium-solubilizing capability. Inoculation of patchouli plants with the isolates S02, S09, and S26 significantly improved shoot growth and decreased the incidence of bacterial wilt caused by RS. The results suggest that screening of dominant bacterial endophytes for effective biocontrol agents based on Illumina sequencing analysis is more efficient than random isolation and screening procedures.
Collapse
Affiliation(s)
- Wenguang Shi
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Junyan Li
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Siyun Xie
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Xing Wang
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Yuxin Zhang
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Huaxiong Yao
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Meiqi Chen
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Jianbin Li
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Zujun Deng
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| |
Collapse
|
4
|
Hamada MA, Soliman ERS. Characterization and genomics identification of key genes involved in denitrification-DNRA-nitrification pathway of plant growth-promoting rhizobacteria (Serratia marcescens OK482790). BMC Microbiol 2023; 23:210. [PMID: 37543572 PMCID: PMC10403818 DOI: 10.1186/s12866-023-02941-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/11/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND A wide variety of microorganisms, including bacteria, live in the rhizosphere zone of plants and have an impact on plant development both favorably and adversely. The beneficial outcome is due to the presence of rhizobacteria that promote plant growth (PGPR). RESULTS In this study, a bacterial strain was isolated from lupin rhizosphere and identified genetically as Serratia marcescens (OK482790). Several biochemically and genetically characteristics were confirmed in vitro and in vivo to determine the OK482790 strain ability to be PGPR. The in vitro results revealed production of different lytic enzymes (protease, lipase, cellulase, and catalase), antimicrobial compounds (hydrogen cyanide, and siderophores), ammonia, nitrite, and nitrate and its ability to reduce nitrate to nitrite. In silico and in vitro screening proposed possible denitrification-DNRA-nitrification pathway for OK482790 strain. The genome screening indicated the presence of nitrite and nitrate genes encoding Nar membrane bound sensor proteins (NarK, NarQ and NarX). Nitrate and nitrite reductase encoding genes (NarI, NarJ, NarH, NarG and NapC/NirT) and (NirB, NirC, and NirD) are also found in addition to nitroreductases (NTR) and several oxidoreductases. In vivo results on wheat seedlings confirmed that seedlings growth was significantly improved by soil inoculation of OK482790 strain. CONCLUSIONS This study provides evidence for participation of S. marcescens OK482790 in nitrogen cycling via the denitrification-DNRA-nitrification pathway and for its ability to produce several enzymes and compounds that support the beneficial role of plant-microbe interactions to sustain plant growth and development for a safer environment.
Collapse
Affiliation(s)
- Marwa A Hamada
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt
| | - Elham R S Soliman
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt.
| |
Collapse
|
5
|
Shi Y, Yuan Y, Feng Y, Zhang Y, Fan Y. Bacterial Diversity Analysis and Screening for ACC Deaminase-Producing Strains in Moss-Covered Soil at Different Altitudes in Tianshan Mountains-A Case Study of Glacier No. 1. Microorganisms 2023; 11:1521. [PMID: 37375023 DOI: 10.3390/microorganisms11061521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The elevation of the snowline of the No. 1 Glacier in the Tianshan Mountains is increasing due to global warming, which has created favorable conditions for moss invasion and offers an opportunity to investigate the synergistic effects of incipient succession by mosses, plants, and soils. In this study, the concept of altitude distance was used instead of succession time. To investigate the changes of bacterial-community diversity in moss-covered soils during glacial degeneration, the relationship between bacterial community structure and environmental factors was analyzed and valuable microorganisms in moss-covered soils were explored. To do so, the determination of soil physicochemical properties, high-throughput sequencing, the screening of ACC-deaminase-producing bacteria, and the determination of ACC-deaminase activity of strains were performed on five moss-covered soils at different elevations. The results showed that the soil total potassium content, soil available phosphorus content, soil available potassium content, and soil organic-matter content of the AY3550 sample belt were significantly different compared with those of other sample belts (p < 0.05). Secondly, there was a significant difference (p < 0.05) in the ACE index or Chao1 index between the moss-covered-soil AY3550 sample-belt and the AY3750 sample-belt bacterial communities as the succession progressed. The results of PCA analysis, RDA analysis, and cluster analysis at the genus level showed that the community structure of the AY3550 sample belt and the other four sample belts differed greatly and could be divided into two successional stages. The enzyme activities of the 33 ACC-deaminase-producing bacteria isolated and purified from moss-covered soil at different altitudes ranged from 0.067 to 4.7375 U/mg, with strains DY1-3, DY1-4, and EY2-5 having the highest enzyme activities. All three strains were identified as Pseudomonas by morphology, physiology, biochemistry, and molecular biology. This study provides a basis for the changes in moss-covered soil microhabitats during glacial degradation under the synergistic effects of moss, soil, and microbial communities, as well as a theoretical basis for the excavation of valuable microorganisms under glacial moss-covered soils.
Collapse
Affiliation(s)
- Yanlei Shi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Ye Yuan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Yingying Feng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Yinghao Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Yonghong Fan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
6
|
De novo Genome Assessment of Serratia marcescens SGT5.3, a Potential Plant Growth-Promoting Bacterium Isolated from the Surface of Capsicum annuum Fruit. Microbiol Resour Announc 2023; 12:e0115422. [PMID: 36598272 PMCID: PMC9872702 DOI: 10.1128/mra.01154-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Serratia marcescens SGT5.3, a potential plant growth-promoting strain with a wide range of functions, was isolated from the surface of Capsicum annuum fruit. Here, we report the whole-genome sequence of this bacterium. Gene prediction revealed various functional genes potentially involved in plant growth promotion and development.
Collapse
|