1
|
Luo C, Bashir NH, Li Z, Liu C, Shi Y, Chu H. Plant microRNAs regulate the defense response against pathogens. Front Microbiol 2024; 15:1434798. [PMID: 39282567 PMCID: PMC11392801 DOI: 10.3389/fmicb.2024.1434798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs, typically 20-25 nucleotides in length, that play a crucial role in regulating gene expression post-transcriptionally. They are involved in various biological processes such as plant growth, development, stress response, and hormone signaling pathways. Plants interact with microbes through multiple mechanisms, including mutually beneficial symbiotic relationships and complex defense strategies against pathogen invasions. These defense strategies encompass physical barriers, biochemical defenses, signal recognition and transduction, as well as systemic acquired resistance. MiRNAs play a central role in regulating the plant's innate immune response, activating or suppressing the transcription of specific genes that are directly involved in the plant's defense mechanisms against pathogens. Notably, miRNAs respond to pathogen attacks by modulating the balance of plant hormones such as salicylic acid, jasmonic acid, and ethylene, which are key in activating plant defense mechanisms. Moreover, miRNAs can cross boundaries into fungal and bacterial cells, performing cross-kingdom RNA silencing that enhances the plant's disease resistance. Despite the complex and diverse roles of miRNAs in plant defense, further research into their function in plant-pathogen interactions is essential. This review summarizes the critical role of miRNAs in plant defense against pathogens, which is crucial for elucidating how miRNAs control plant defense mechanisms.
Collapse
Affiliation(s)
- Changxin Luo
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Nawaz Haider Bashir
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Zhumei Li
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Chao Liu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Yumei Shi
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Honglong Chu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| |
Collapse
|
2
|
Xu Z, Wang G, Wang Q, Li X, Zhang G, Qurban A, Zhang C, Zhou Y, Si H, Hu L, Wang F, Wang Y, Tian Z, Chen W, Jin S, Ding F. A near-complete genome assembly of Catharanthus roseus and insights into its vinblastine biosynthesis and high susceptibility to the Huanglongbing pathogen. PLANT COMMUNICATIONS 2023; 4:100661. [PMID: 37464741 PMCID: PMC10721464 DOI: 10.1016/j.xplc.2023.100661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/28/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023]
Abstract
This study reports the assembly of a near-complete genome of Catharanthus roseus, consisting of 561.7 Mb scaffolded into 8 pseudochromosomes with a contig N50 of 24.7 Mb and a scaffold N50 of 71.1 Mb. The assembly enables the construction of a gene regulatory network of the vinblastine biosynthetic pathway and provides insights into the high susceptibility of C. roseus to the Huanglongbing pathogen.
Collapse
Affiliation(s)
- Zhongping Xu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guanying Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiongqiong Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoting Li
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guangyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ali Qurban
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Can Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yi Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huan Si
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Lisong Hu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
| | - Fuqiu Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ying Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhitao Tian
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fang Ding
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Key Laboratory of Horticultural Plant Biology of MOE (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Zheng Y, Zhang J, Li Y, Liu Y, Liang J, Wang C, Fang F, Deng X, Zheng Z. Pathogenicity and Transcriptomic Analyses of Two " Candidatus Liberibacter asiaticus" Strains Harboring Different Types of Phages. Microbiol Spectr 2023; 11:e0075423. [PMID: 37071011 PMCID: PMC10269750 DOI: 10.1128/spectrum.00754-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/31/2023] [Indexed: 04/19/2023] Open
Abstract
"Candidatus Liberibacter asiaticus" is one of the putative causal agents of citrus Huanglongbing (HLB), a highly destructive disease threatening the global citrus industry. Several types of phages had been identified in "Ca. Liberibacter asiaticus" strains and found to affect the biology of "Ca. Liberibacter asiaticus." However, little is known about the influence of phages in "Ca. Liberibacter asiaticus" pathogenicity. In this study, two "Ca. Liberibacter asiaticus" strains, PYN and PGD, harboring different types of phages were collected and used for pathogenicity analysis in periwinkle (Catharanthus roseus). Strain PYN carries a type 1 phage (P-YN-1), and PGD harbors a type 2 phage (P-GD-2). Compared to strain PYN, strain PGD exhibited a faster reproduction rate and higher virulence in periwinkle: leaf symptoms appeared earlier, and there was a stronger inhibition in the growth of new flush. Estimation of phage copy numbers by type-specific PCR indicated that there are multiple copies of phage P-YN-1 in strain PYN, while strain PGD carries only a single copy of phage P-GD-2. Genome-wide gene expression profiling revealed the lytic activity of P-YN-1 phage, as evidenced by the unique expression of genes involved in lytic cycle, which may limit the propagation of strain PYN and lead to a delayed infection in periwinkle. However, the activation of genes involved in lysogenic conversion of phage P-GD-1 indicated it could reside within the "Ca. Liberibacter asiaticus" genome as a prophage form in strain PGD. Comparative transcriptome analysis showed that the significant differences in expression of virulence factor genes, including genes associated with pathogenic effectors, transcriptional factors, the Znu transport system, and the heme biosynthesis pathway, could be another major determinant of virulence variation between two "Ca. Liberibacter asiaticus" strains. This study expanded our knowledge of "Ca. Liberibacter asiaticus" pathogenicity and provided new insights into the differences in pathogenicity between "Ca. Liberibacter asiaticus" strains. IMPORTANCE Citrus Huanglongbing (HLB), also called citrus greening disease, is a highly destructive disease threatening citrus production worldwide. "Candidatus Liberibacter asiaticus" is one of the most common putative causal agents of HLB. Phages of "Ca. Liberibacter asiaticus" have recently been identified and found to affect "Ca. Liberibacter asiaticus" biology. Here, we found that "Ca. Liberibacter asiaticus" strains harboring different types of phages (type 1 or type 2) showed different levels of pathogenicity and multiplication patterns in the periwinkle plant (Catharanthus roseus). Transcriptome analysis revealed the possible lytic activity of type 1 phage in a "Ca. Liberibacter asiaticus" strain, which could limit the propagation of "Ca. Liberibacter asiaticus" and lead to the delayed infection in periwinkle. The heterogeneity in the transcriptome profiles, particularly the significant differences in expression of virulence factors genes, could be another major determinant of difference in virulence observed between the two "Ca. Liberibacter asiaticus" strains. These findings improved our understanding of "Ca. Liberibacter asiaticus"-phage interaction and provided insight into "Ca. Liberibacter asiaticus" pathogenicity.
Collapse
Affiliation(s)
- Yongqin Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jingxue Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yun Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yaoxin Liu
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Jiayin Liang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Cheng Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Fang Fang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaoling Deng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zheng Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Zhou T, Cao L, Hu K, Yu X, Qu S. miR164-NAC21/22 module regulates the resistance of Malus hupehensis against Alternaria alternata by controlling jasmonic acid signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111635. [PMID: 36787851 DOI: 10.1016/j.plantsci.2023.111635] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/06/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Apple leaf spot disease caused by Alternaria alternata apple pathotype (A. alternata AP) is one of the most severe fungal diseases affecting apple cultivation. Transcription factors are involved in various disease-resistance responses, and many of them are regulated by miRNAs. Here, we performed RNA-Seq to investigate gene expression changes during the defense response of Malus hupehensis against A. alternata AP. NAC21/22 was induced upon A. alternata AP infection and silenced by miR164 via direct mRNA cleavage. Contrasting expression patterns were noted between mature miR164 and NAC21/22 during infection. Contrary to NAC21/22 silencing, transiently overexpressing NAC21/22 in M. hupehensis alleviated disease symptoms on 'gala' leaves, impeded A. alternata AP growth, and promoted jasmonic acid (JA) signaling-related gene expression. Importantly, transient miR164f overexpression in 'gala' leaves enhanced A. alternata AP sensitivity, due perhaps to NAC21/22 downregulation, whereas miR164 suppression produced an opposite effect. In summary, the miR164-NAC21/22 module plays a pivotal role in apple resistance against A. alternata AP by regulating JA signaling.
Collapse
Affiliation(s)
- Tingting Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Lifang Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Kaixu Hu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Xinyi Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
5
|
Li T, Deng Y, Huang J, Liang J, Zheng Y, Xu Q, Fan S, Li W, Deng X, Zheng Z. Bidirectional mRNA transfer between Cuscuta australis and its hosts. FRONTIERS IN PLANT SCIENCE 2022; 13:980033. [PMID: 36072332 PMCID: PMC9441868 DOI: 10.3389/fpls.2022.980033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The holoparasitic dodder (Cuscuta spp.) is able to transfer mRNA and certain plant pathogens (e.g., viruses and bacteria) from the host plant. "Candidatus Liberibacter asiaticus," the phloem-limited causative agent of citrus Huanglongbing, can be transferred from citrus to periwinkle (Catharanthus roseus) mediated by dodder. However, characterization of mRNA transport between dodder and citrus/periwinkle remains unclear. In this study, we sequenced transcriptomes of dodder and its parasitizing host, sweet orange (Citrus sinensis "Newhall") and periwinkle (Catharanthus roseus), to identify and characterize mRNA transfer between dodder and the host plant during parasitism. The mRNA transfer between dodder and citrus/periwinkle was bidirectional and most of the transfer events occurred in the interface tissue. Compared with the citrus-dodder system, mRNA transfer in the periwinkle-dodder system was more frequent. Function classification revealed that a large number of mRNAs transferred between dodder and citrus/periwinkle were involved in secondary metabolism and stress response. Dodder transcripts encoding proteins associated with microtubule-based processes and cell wall biogenesis were transferred to host tissues. In addition, transcripts involved in translational elongation, plasmodesmata, and the auxin-activated signaling pathway were transmitted between dodder and citrus/periwinkle. In particular, transcripts involved in shoot system development and flower development were transferred between the host and dodder in both directions. The high abundance of dodder-origin transcripts, encoding MIP aquaporin protein, and S-adenosylmethionine synthetase 1 protein, in citrus and periwinkle tissues indicated they could play an important biological role in dodder-host interaction. In addition, the uptake of host mRNAs by dodder, especially those involved in seed germination and flower development, could be beneficial for the reproduction of dodder. The results of this study provide new insights into the RNA-based interaction between dodder and host plants.
Collapse
|