1
|
Lu H, Han X, Qin D, Sheng L, Du C, Wang B, Zhao H, Lu Y, Liu Y, Hu HY, Liu Y, Zhang D. Tricyclic Benzo[1,3]oxazinyloxazolidinones as Potent Antibacterial Agents against Drug-Resistant Pathogens. J Med Chem 2024; 67:16088-16106. [PMID: 39236219 DOI: 10.1021/acs.jmedchem.3c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Herein, we developed a series of benzo[1,3]oxazinyloxazolidinones as potent antibacterial agents. Some of the compounds exhibited potent antibacterial activity against a range of clinical drug-resistant pathogens, including Mtb, MRSA, MRSE, VISA, and VRE. Notably, compound 16d inhibited protein synthesis and displayed potent activity against linezolid-resistant Enterococcus faecalis. Although 16d showed cross-resistance to linezolid-resistant MRSA, the frequency of resistance development of MRSA against 16d was lower compared to that of linezolid. Additionally, 16d exhibited excellent pharmacokinetic properties and superior in vivo efficacy compared to linezolid. Furthermore, compound 16d modulated cytokine levels and ameliorated histopathological changes in major organs of bacterially infected mice. Hoechst-PI double staining and scanning electron microscopy analyses revealed that 16d exhibited some similarities with linezolid in its effects while also demonstrating a distinct mechanism characterized by cell membrane damage. Moreover, 16d significantly disrupted the MRSA biofilms. The antibacterial agent 16d represents a promising candidate for the treatment of serious infections caused by drug-resistant bacteria.
Collapse
Affiliation(s)
- Haijia Lu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Xiaowan Han
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Di Qin
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Li Sheng
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Chen Du
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing 101149, China
| | - Hongyi Zhao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing 101149, China
| | - Yishuang Liu
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Tiantan Xili, Beijing 100050, China
| | - Hai-Yu Hu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Dongfeng Zhang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| |
Collapse
|
2
|
Michaelis C, Berger TMI, Kuhlmann K, Ghulam R, Petrowitsch L, Besora Vecino M, Gesslbauer B, Pavkov-Keller T, Keller W, Grohmann E. Effect of TraN key residues involved in DNA binding on pIP501 transfer rates in Enterococcus faecalis. Front Mol Biosci 2024; 11:1268647. [PMID: 38380428 PMCID: PMC10877727 DOI: 10.3389/fmolb.2024.1268647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024] Open
Abstract
Conjugation is a major mechanism that facilitates the exchange of antibiotic resistance genes among bacteria. The broad-host-range Inc18 plasmid pIP501 harbors 15 genes that encode for a type IV secretion system (T4SS). It is a membrane-spanning multiprotein complex formed between conjugating donor and recipient cells. The penultimate gene of the pIP501 operon encodes for the cytosolic monomeric protein TraN. This acts as a transcriptional regulator by binding upstream of the operon promotor, partially overlapping with the origin of transfer. Additionally, TraN regulates traN and traO expression by binding upstream of the PtraNO promoter. This study investigates the impact of nine TraN amino acids involved in binding to pIP501 DNA through site-directed mutagenesis by exchanging one to three residues by alanine. For three traN variants, complementation of the pIP501∆traN knockout resulted in an increase of the transfer rate by more than 1.5 orders of magnitude compared to complementation of the mutant with native traN. Microscale thermophoresis (MST) was used to assess the binding affinities of three TraN double-substituted variants and one triple-substituted variant to its cognate pIP501 double-stranded DNA. The MST data strongly correlated with the transfer rates obtained by biparental mating assays in Enterococcus faecalis. The TraN variants TraN_R23A-N24A-Q28A, TraN_H82A-R86A, and TraN_G100A-K101A not only exhibited significantly lower DNA binding affinities but also, upon complementation of the pIP501∆traN knockout, resulted in the highest pIP501 transfer rates. This confirms the important role of the TraN residues R23, N24, Q28, H82, R86, G100, and K101 in downregulating pIP501 transfer. Although TraN is not part of the mating pair formation complex, TraE, TraF, TraH, TraJ, TraK, and TraM were coeluted with TraN in a pull-down. Moreover, TraN homologs are present not only in Inc18 plasmids but also in RepA_N and Rep_3 family plasmids, which are frequently found in enterococci, streptococci, and staphylococci. This points to a widespread role of this repressor in conjugative plasmid transfer among Firmicutes.
Collapse
Affiliation(s)
- Claudia Michaelis
- Faculty of Life Sciences and Technology, Department of Microbiology, Berliner Hochschule für Technik, Berlin, Germany
| | | | - Kirill Kuhlmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Rangina Ghulam
- Faculty of Life Sciences and Technology, Department of Microbiology, Berliner Hochschule für Technik, Berlin, Germany
| | - Lukas Petrowitsch
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Elisabeth Grohmann
- Faculty of Life Sciences and Technology, Department of Microbiology, Berliner Hochschule für Technik, Berlin, Germany
| |
Collapse
|
3
|
Lysitsas M, Triantafillou E, Spyrou V, Billinis C, Valiakos G. Phenotypic Investigation of Florfenicol Resistance and Molecular Detection of floR Gene in Canine and Feline MDR Enterobacterales. Vet Sci 2024; 11:71. [PMID: 38393089 PMCID: PMC10892669 DOI: 10.3390/vetsci11020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Florfenicol is a promising antibiotic for use in companion animals, especially as an alternative agent for infections caused by MDR bacteria. However, the emergence of resistant strains could hinder this potential. In this study, florfenicol resistance was investigated in a total of 246 MDR Enterobacterales obtained from canine and feline clinical samples in Greece over a two-year period (October 2020 to December 2022); a total of 44 (17,9%) florfenicol-resistant strains were recognized and further investigated. Most of these isolates originated from urine (41.9%) and soft tissue (37.2%) samples; E. coli (n = 14) and Enterobacter cloacae (n = 12) were the predominant species. The strains were examined for the presence of specific florfenicol-related resistance genes floR and cfr. In the majority of the isolates (31/44, 70.5%), the floR gene was detected, whereas none carried cfr. This finding creates concerns of co-acquisition of plasmid-mediated florfenicol-specific ARGs through horizontal transfer, along with several other resistance genes. The florfenicol resistance rates in MDR isolates seem relatively low but considerable for a second-line antibiotic; thus, in order to evaluate the potential of florfenicol to constitute an alternative antibiotic in companion animals, continuous monitoring of antibiotic resistance profiles is needed in order to investigate the distribution of florfenicol resistance under pressure of administration of commonly used agents.
Collapse
Affiliation(s)
- Marios Lysitsas
- Faculty of Veterinary Science, University of Thessaly, 431 00 Karditsa, Greece; (M.L.); (C.B.)
| | | | - Vassiliki Spyrou
- Department of Animal Science, University of Thessaly, 413 34 Larissa, Greece;
| | - Charalambos Billinis
- Faculty of Veterinary Science, University of Thessaly, 431 00 Karditsa, Greece; (M.L.); (C.B.)
| | - George Valiakos
- Faculty of Veterinary Science, University of Thessaly, 431 00 Karditsa, Greece; (M.L.); (C.B.)
| |
Collapse
|
4
|
Ben Yahia H, Trabelsi I, Arous F, García-Vela S, Torres C, Ben Slama K. Detection of linezolid and vancomycin resistant Enterococcus isolates collected from healthy chicken caecum. J Appl Microbiol 2024; 135:lxae027. [PMID: 38317636 DOI: 10.1093/jambio/lxae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
AIM The poultry industry represents an important economic sector in Tunisia. This study aims to determine the antimicrobial resistance phenotypes and genotypes and virulence factors of enterococci collected from chicken caecum in Tunisia. METHODS AND RESULTS Forty-nine composite chicken caecum samples were recovered in 49 different Tunisian farms (December 2019-March 2020). Each composite sample corresponds to six individual caecum from each farm. Composite samples were plated on Slanetz-Bartley agar both supplemented (SB-Van) and not supplemented (SB) with vancomycin and isolates were identified by matrix-assisted laser desorption/ionization time-of-flight. Antibiotic resistance and virulence genes were tested by Polymerase Chain Reaction (PCR) and sequencing and multilocus-sequence-typing of selected enterococci was performed. One hundred sixty seven enterococci of six different species were recovered. Acquired linezolid resistance was detected in 6 enterococci of 4/49 samples (8.1%): (A) four optrA-carrying Enterococcus faecalis isolates assigned to ST792, ST478, and ST968 lineages; (B) two poxtA-carrying Enterococcus faecium assigned to ST2315 and new ST2330. Plasmid typing highlighted the presence of the rep10, rep14, rep7, rep8, and pLG1 in these strains. One vancomycin-resistant E. faecium isolate (typed as ST1091) with vanA gene (included in Tn1546) was detected in SB-Van plates. The gelE, agg, esp, and hyl virulence genes were found in linezolid- and vancomycin-resistant enterococci. High resistance rates were identified in the enterococci recovered in SB plates: tetracycline [74.8%, tet(M) and tet(L) genes], erythromycin [65.9%, erm(B)], and gentamicin [37.1%, aac(6')-Ie-aph(2″)-Ia]. CONCLUSION The detection of emerging mechanisms of resistance related to linezolid and vancomycin in the fecal enterococci of poultry farms has public health implications, and further surveillance should be carried out to control their dissemination by the food chain.
Collapse
Affiliation(s)
- Houssem Ben Yahia
- Laboratoire Bioressources, Environnement et Biotechnologie (LR22ES04), Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Islem Trabelsi
- Laboratoire Bioressources, Environnement et Biotechnologie (LR22ES04), Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Fatma Arous
- Laboratoire Bioressources, Environnement et Biotechnologie (LR22ES04), Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Sara García-Vela
- Area de Bioquímica y Biología Molecular, Universidad de La Rioja, 26006 Logroño, Spain
- Department of Food Science, University of Laval, QC G1V 0A6 Quebec, Canada
| | - Carmen Torres
- Area de Bioquímica y Biología Molecular, Universidad de La Rioja, 26006 Logroño, Spain
| | - Karim Ben Slama
- Laboratoire Bioressources, Environnement et Biotechnologie (LR22ES04), Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| |
Collapse
|
5
|
Zeng W, Han Y, Zheng X, Yao Z, Xu C, Zhang X, Tang M, Shen M, Zhou T. Evaluation of resazurin microplate method for rapid detection of vancomycin and linezolid resistance in Enterococcus faecalis and Enterococcus faecium clinical isolates. J Antimicrob Chemother 2023; 78:466-477. [PMID: 36575476 DOI: 10.1093/jac/dkac415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/16/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Vancomycin and linezolid resistance among enterococci is an increasing problem due to a lack of alternative antibiotics. Early identification of vancomycin-resistant and linezolid-resistant strains can help prevent the spread of resistance to these antibiotics. Hence, early, rapid and accurate detection of vancomycin and linezolid resistance is critical. OBJECTIVES The resazurin microplate method (RMM) was developed for detecting vancomycin and linezolid susceptibility among Enterococcus faecalis (E. faecalis) and Enterococcus faecium (E. faecium) clinical isolates, and its performance was further evaluated. METHODS A total of 209 non-duplicate clinical isolates and three strains from the faeces of domestic animals, including 142 E. faecalis (71 linezolid non-susceptible and 71 linezolid susceptible) and 70 E. faecium (23 vancomycin non-susceptible, 23 vancomycin susceptible, 12 linezolid non-susceptible and 12 linezolid susceptible), were tested using RMM. RESULTS The susceptibility of E. faecium to vancomycin was detected within 5 h, with high susceptibility (23/23) and specificity (23/23). The susceptibility of E. faecalis and E. faecium to linezolid was detected within 4 h, with specificities of 98.59% and 100% and susceptibilities of 94.37% and 58.33% for E. faecalis and E. faecium, respectively. CONCLUSIONS RMM had a good positive predictive value for the detection of vancomycin-non-susceptible E. faecium and linezolid-non-susceptible E. faecalis. It thus has the potential to become an alternative method for the rapid screening of these resistant pathogens in clinical practice.
Collapse
Affiliation(s)
- Weiliang Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Yijia Han
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiangkuo Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Zhuocheng Yao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chunquan Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Miran Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Mo Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| |
Collapse
|
6
|
Yao X, Song Q, Zhu W, Wei J, Shao D, Liu K, Li Z, Qiu Y, Ma Z, Xia L, Li B. Characterization of small plasmids carrying florfenicol resistance gene floR in Actinobacillus pleuropneumoniae and Pasteurella multocida isolates from swine in China. Front Vet Sci 2023; 10:1084491. [PMID: 36793377 PMCID: PMC9922843 DOI: 10.3389/fvets.2023.1084491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023] Open
Abstract
Actinobacillus pleuropneumoniae and Pasteurella multocida are two important bacterial pathogens in swine industry. In the present study, resistance profiles of nine commonly used antibiotics of A. pleuropneumoniae and P. multocida isolates of swine origin from different regions of China were investigated by determination of minimum inhibitory concentrations (MICs). In addition, genetic relationship of the florfenicol-resistant A. pleuropneumoniae and P. multocida isolates was determined by pulsed-field gel electrophoresis (PFGE). The genetic basis of florfenicol resistance in these isolates were explored by floR detection and whole genome sequencing. High resistance rates (>25%) of florfenicol, tetracycline and trimethoprim- sulfamethoxazole were observed for both bacteria. No ceftiofur- and tiamulin- resistant isolates were detected. Furthermore, all the 17 florfenicol-resistant isolates (nine for A. pleuropneumoniae and eight for P. multocida) were positive for floR gene. The presence of similar PFGE types in these isolates suggested that clonal expansion of some floR-producing strains occurred in the pig farms from same regions. WGS and PCR screening showed that three plasmids, named pFA11, pMAF5, and pMAF6, were the cargos of the floR genes in the 17 isolates. Plasmid pFA11 exhibited novel structure and carried several resistance genes, including floR, sul2, aacC2d, strA, strB, and bla ROB - 1. Plasmids pMAF5 and pMAF6 were presented in A. pleuropneumoniae and P. multocida isolates from different regions, suggesting horizontal transfer of the two plasmids are important for the floR dissemination in these Pasteurellaceae pathogens. Further studies of florfenicol resistance and its transfer vectors in Pasteurellaceae bacteria of veterinary origin are warranted.
Collapse
Affiliation(s)
- Xiaohui Yao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,College of Veterinary Medicine, Xinjiang Agricultural University, Urmuqi, China
| | - Qiangqiang Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,College of Veterinary Medicine, Xinjiang Agricultural University, Urmuqi, China
| | - Wei Zhu
- Tengzhou Animal Disease Prevention and Control Center of Shandong Province, Tengzhou, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lining Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Urmuqi, China,*Correspondence: Lining Xia ✉
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,Beibei Li ✉
| |
Collapse
|