1
|
Kornienko M, Bespiatykh D, Abdraimova N, Gorodnichev R, Gostev V, Boldyreva D, Selezneva O, Veselovsky V, Pobeguts O, Smirnov I, Arapidi G, Klimina K, Shitikov E. Multiomics analysis of Staphylococcus aureus ST239 strains resistant to virulent Herelleviridae phages. Sci Rep 2024; 14:29375. [PMID: 39592862 PMCID: PMC11599779 DOI: 10.1038/s41598-024-80909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024] Open
Abstract
In the context of the antimicrobial therapy crisis, the significance of studying and implementing alternative treatment methods, particularly phage therapy, is increasingly evident. This study aimed to investigate the resistance of clinical Staphylococcus aureus ST239 strains to Herelleviridae phages through comparative genomics, transcriptomics, and proteomics. Analysis of resistant and sensitive S. aureus strains showed that resistant strains form a separate cluster on the phylogenetic tree, suggesting unique genetic traits underlying their phage resistance. Further in-depth analysis of the resistant SA191 strain infected with Herelleviridae phage, compared to an uninfected control, unveiled significant changes in the transcription of 462 genes (271↑ 191↓) at 5 min and 504 genes (276↑ 228↓) at 30 min post-infection. Proteomic analysis identified 184 differentially abundant proteins (41↑ 143↓) at 30 min. Functional analysis highlighted changes in the glycolysis, the tricarboxylic acid cycle, and transport systems; notable, changes were also observed in the transcription of prophage genes. Despite the observed metabolic shifts, classical resistance mechanisms related to teichoic acid synthesis, restriction-modification, and toxin-antitoxin systems were not identified, suggesting the existence of other mechanism. Our study contributes to the elucidation of S. aureus resistance mechanisms against Herelleviridae phages, highlighting the intricate nature of bacterial defense mechanisms.
Collapse
Affiliation(s)
- M Kornienko
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.
| | - D Bespiatykh
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - N Abdraimova
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - R Gorodnichev
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - V Gostev
- Pediatric Research and Clinical Center for Infectious Diseases, Saint Petersburg, Russia
- North-Western State Medical University Named After I. I. Mechnikov, Saint Petersburg, Russia
| | - D Boldyreva
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - O Selezneva
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - V Veselovsky
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - O Pobeguts
- Department of Post-Genomic Technologies, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - I Smirnov
- Department of Post-Genomic Technologies, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - G Arapidi
- Department of Post-Genomic Technologies, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - K Klimina
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - E Shitikov
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
2
|
Li P, Zhou D, Xie Y, Yuan Z, Huang M, Xu G, Huang J, Zhuang Z, Luo Y, Yu H, Wang X. Targeting G-quadruplex by TMPyP4 for inhibition of colorectal cancer through cell cycle arrest and boosting anti-tumor immunity. Cell Death Dis 2024; 15:816. [PMID: 39528472 PMCID: PMC11554887 DOI: 10.1038/s41419-024-07215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
G-quadruplex (G4) is a noncanonical DNA secondary structure known to induce DNA damage and regulate the expression of immune-related genes. We aim to exploit the G4 folding as a treatment strategy to trigger anti-tumor immune response. In this study, we observe that the abundant genomic G4 in epithelial cells coexists with increased infiltration of CD8+ T cells in colorectal cancer tissue. Furthermore, our data substantiate the inhibitory effect of the G4 ligand TMPyP4 on cancer progression while concurrently stimulating anti-tumor immunity. Mechanistically, TMPyP4 impedes cancer cell proliferation and induces G2/M cell cycle arrest. Additionally, in vivo experiments demonstrate that TMPyP4 enhances the anti-tumor immune response by triggering DNA damage and activating the cGAS-STING pathway, which fosters CD8+ T cell activation and dendritic cell maturation. Importantly, the combined treatment of TMPyP4 and anti-PD1 exhibits a synergistic therapeutic effect on colorectal cancer. In summary, our findings underscore the potential of the G4 ligand TMPyP4 as a dual strategy to target colorectal cancer: inhibiting cancer progression and augmenting anti-tumor immunity through the activation of cGAS-STING pathway.
Collapse
Grants
- the Postdoctoral Fellowship Program of CPSF (No. GZC20242094, PL)
- the Project 5010 of Clinical Medical Research of Sun Yat-sen University-5010 Cultivation Foundation (No. 2018026, YL), the Sixth Affiliated Hospital of Sun Yat-sen University Clinical Research-'1010' Program (YL), the National Natural Science Foundation of China (No. 81972245, YL; No. 82173067, YL), the Scientific Research Project of the Sixth Affiliated Hospital Of Sun Yat-Sen University (2022JBGS07), the Talent Project of the Sixth Affiliated Hospital of Sun Yat-sen University (No. P20150227202010251, YL), the Excellent Talent Training Project of the Sixth Affiliated Hospital of Sun Yat-sen University (No. R2021217202512965, YL), the Program of Introducing Talents of Discipline to Universities (YL)
- the National Natural Science Foundation of China (No. 82272965, HY), the Natural Science Foundation of Guangdong Province (No. 2022A1515012656), the Science and Technology Program of Guangzhou (202201011004, HY), the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (No. 23ykbj007, HY)
Collapse
Affiliation(s)
- Peisi Li
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dawang Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yumo Xie
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ze Yuan
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mingzhe Huang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gaopo Xu
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junfeng Huang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhuokai Zhuang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanxin Luo
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Huichuan Yu
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Xiaolin Wang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Chaudhuri R, Prasanth T, Biswas D, Mandal S, Dash J. Combating multidrug-resistance in S. pneumoniae: a G-quadruplex binding inhibitor of efflux pump and its bio-orthogonal assembly. NAR MOLECULAR MEDICINE 2024; 1:ugae005. [PMID: 38694210 PMCID: PMC11059089 DOI: 10.1093/narmme/ugae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
Antibiotic resistance poses a significant global health threat, necessitating innovative strategies to combat multidrug-resistant bacterial infections. Streptococcus pneumoniae, a pathogen responsible for various infections, harbors highly conserved DNA quadruplexes in genes linked to its pathogenesis. In this study, we introduce a novel approach to counter antibiotic resistance by stabilizing G-quadruplex structures within the open reading frames of key resistance-associated genes (pmrA, recD and hsdS). We synthesized An4, a bis-anthracene derivative, using Cu(I)-catalyzed azide-alkyne cycloaddition, which exhibited remarkable binding and stabilization of the G-quadruplex in the pmrA gene responsible for drug efflux. An4 effectively permeated multidrug-resistant S. pneumoniae strains, leading to a substantial 12.5-fold reduction in ciprofloxacin resistance. Furthermore, An4 downregulated pmrA gene expression, enhancing drug retention within bacterial cells. Remarkably, the pmrA G-quadruplex cloned into the pET28a(+) plasmid transformed into Escherichia coli BL21 cells can template Cu-free bio-orthogonal synthesis of An4 from its corresponding alkyne and azide fragments. This study presents a pioneering strategy to combat antibiotic resistance by genetically reducing drug efflux pump expression through G-quadruplex stabilization, offering promising avenues for addressing antibiotic resistance.
Collapse
Affiliation(s)
- Ritapa Chaudhuri
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, West-Bengal 700032, India
| | - Thumpati Prasanth
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, West-Bengal 700032, India
| | - Debasmita Biswas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, West-Bengal 700032, India
| | - Subhranshu Mandal
- Laboratory Medicine, Chittaranjan National Cancer Institute, Kolkata, West Bengal 700156, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, West-Bengal 700032, India
| |
Collapse
|
4
|
Ji D, Yuan JH, Chen SB, Tan JH, Kwok C. Selective targeting of parallel G-quadruplex structure using L-RNA aptamer. Nucleic Acids Res 2023; 51:11439-11452. [PMID: 37870474 PMCID: PMC10681708 DOI: 10.1093/nar/gkad900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
G-quadruplexes (G4) are special nucleic acid structures with diverse conformational polymorphisms. Selective targeting of G-quadruplex conformations and regulating their biological functions provide promising therapeutic intervention. Despite the large repertoire of G4-binding tools, only a limited number of them can specifically target a particular G4 conformation. Here, we introduce a novel method, G4-SELEX-Seq and report the development of the first L-RNA aptamer, L-Apt12-6, with high binding selectivity to parallel G4 over other nucleic acid structures. Using parallel dG4 c-kit 1 as an example, we demonstrate the strong binding affinity between L-Apt12-6 and c-kit 1 dG4 in vitro and in cells, and notably report the applications of L-Apt12-6 in controlling DNA replication and gene expression. Our results suggest that L-Apt12-6 is a valuable tool for targeting parallel G-quadruplex conformation and regulating G4-mediated biological processes. Furthermore, G4-SELEX-Seq can be used as a general platform for G4-targeting L-RNA aptamers selection and should be applicable to other nucleic acid structures.
Collapse
Affiliation(s)
- Danyang Ji
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jia-Hao Yuan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Heng Tan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
5
|
Poh WH, Ruhazat NS, Yang LK, Shivhare D, Lim PK, Kanagasundaram Y, Rice SA, Mutwil M. Transcriptomic and metabolomic characterization of antibacterial activity of Melastoma dodecandrum. FRONTIERS IN PLANT SCIENCE 2023; 14:1205725. [PMID: 37771487 PMCID: PMC10525717 DOI: 10.3389/fpls.2023.1205725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023]
Abstract
Antibacterial resistance poses a significant global threat, necessitating the discovery of new therapeutic agents. Plants are a valuable source of secondary metabolites with demonstrated anticancer and antibacterial properties. In this study, we reveal that Melastoma dodecandrum exhibits both bacteriostatic and bactericidal effects against Pseudomonas aeruginosa and Staphylococcus aureus. Treatment with plant extracts results in membrane damage and a reduction in P.aeruginosa swimming and swarming motility. A comparative analysis of bacterial transcriptomes exposed to M.dodecandrum extracts and four distinct antibiotics indicates that the extracts may trigger similar transcriptomic responses as triclosan, a fatty acid synthesis inhibitor. Activity-guided fractionation suggests that the antibacterial activity is not attributable to hydrolyzable tannins, but to unidentified minor compounds. Additionally, we identified 104 specialized metabolic pathways and demonstrated a high level of transcriptional coordination between these biosynthetic pathways and phytohormones, highlighting potential regulatory mechanisms of antibacterial metabolites in M.dodecandrum.
Collapse
Affiliation(s)
- Wee Han Poh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Nur Syahirah Ruhazat
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lay Kien Yang
- Shared Analytics, Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Devendra Shivhare
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- AAVACC PTE LTD, Singapore, Singapore
| | - Peng Ken Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yoganathan Kanagasundaram
- Shared Analytics, Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Agriculture and Food, Microbiomes for One Systems Health, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, ACT, Australia
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
6
|
Sannikova NE, Kolokolov MI, Khlynova TA, Chubarov AS, Polienko YF, Fedin MV, Krumkacheva OA. Revealing light-induced structural shifts in G-quadruplex-porphyrin complexes: a pulsed dipolar EPR study. Phys Chem Chem Phys 2023; 25:22455-22466. [PMID: 37581249 DOI: 10.1039/d3cp01775c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The binding of G-quadruplex structures (G4s) with photosensitizers is of considerable importance in medicinal chemistry and drug discovery due to their promising potential in photodynamic therapy applications. G4s can experience structural changes as a result of ligand interactions and light exposure. Understanding these modifications is essential to uncover the fundamental biological roles of the complexes and optimize their therapeutic potential. The structural diversity of G4s makes it challenging to study their complexes with ligands, necessitating the use of various complementary methods to fully understand these interactions. In this study, we introduce, for the first time, the application of laser-induced dipolar EPR as a method to characterize G-quadruplex DNA complexes containing photosensitizers and to investigate light-induced structural modifications in these systems. To demonstrate the feasibility of this approach, we studied complexes of the human telomeric G-quadruplex (HTel-22) with cationic 5,10,15,20-tetrakis(1-methyl-4-pyridinio) porphyrin tetra(p-toluenesulfonate) (TMPyP4). In addition to showcasing a new methodology, we also aimed to provide insights into the mechanisms underlying photoinduced HTel-22/TMPyP4 structural changes, thereby aiding in the advancement of approaches targeting G4s in photodynamic therapy. EPR revealed G-quadruplex unfolding and dimer formation upon light exposure. Our findings demonstrate the potential of EPR spectroscopy for examining G4 complexes with photosensitizers and contribute to a better understanding of G4s' interactions with ligands under light.
Collapse
Affiliation(s)
- Natalya E Sannikova
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Mikhail I Kolokolov
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Tamara A Khlynova
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Alexey S Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Yuliya F Polienko
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | - Olesya A Krumkacheva
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia.
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Yegorov YE, Vishnyakova KS, Pan X, Egorov AE, Popov KV, Tevonyan LL, Chashchina GV, Kaluzhny DN. Mechanisms of Phototoxic Effects of Cationic Porphyrins on Human Cells In Vitro. Molecules 2023; 28:molecules28031090. [PMID: 36770766 PMCID: PMC9921399 DOI: 10.3390/molecules28031090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The toxic effects of four cationic porphyrins on various human cells were studied in vitro. It was found that, under dark conditions, porphyrins are almost nontoxic, while, under the action of light, the toxic effect was observed starting from nanomolar concentrations. At a concentration of 100 nM, porphyrins caused inhibition of metabolism in the MTT test in normal and cancer cells. Furthermore, low concentrations of porphyrins inhibited colony formation. The toxic effect was nonlinear; with increasing concentrations of various porphyrins, up to about 1 μM, the effect reached a plateau. In addition to the MTT test, this was repeated in experiments examining cell permeability to trypan blue, as well as survival after 24 h. The first visible manifestation of the toxic action of porphyrins is blebbing and swelling of cells. Against the background of this process, permeability to porphyrins and trypan blue appears. Subsequently, most cells (even mitotic cells) freeze in this swollen state for a long time (24 and even 48 h), remaining attached. Cellular morphology is mostly preserved. Thus, it is clear that the cells undergo mainly necrotic death. The hypothesis proposed is that the concentration dependence of membrane damage indicates a limited number of porphyrin targets on the membrane. These targets may be any ion channels, which should be considered in photodynamic therapy.
Collapse
Affiliation(s)
- Yegor E. Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence: (Y.E.Y.); (D.N.K.)
| | - Khava S. Vishnyakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Xiaowen Pan
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, Russian Academy of Sciences, 141701 Dolgoprudny, Russia
| | - Anton E. Egorov
- Emanuel Institute of Biochemical Physics, Russian Academy of Science, 4 Kosygin Street, 119334 Moscow, Russia
| | - Konstantin V. Popov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I.Kulakov, 4 Oparina Street, 117997 Moscow, Russia
| | - Liana L. Tevonyan
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, Russian Academy of Sciences, 141701 Dolgoprudny, Russia
| | - Galina V. Chashchina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry N. Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence: (Y.E.Y.); (D.N.K.)
| |
Collapse
|
8
|
Shitikov EA, Bespiatykh DA, Bodoev IN, Zaychikova MV. G-Quadruplex Structures in Bacteria: Functional Properties and Prospects for Use as Biotargets. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2022. [DOI: 10.1134/s1990750822040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Zaychikova MV, Bespiatykh DA, Malakhova MV, Bodoev IN, Vedekhina TS, Veselovsky VA, Klimina KM, Varizhuk AM, Shitikov EA. Transcriptional profiling of Mycobacterium smegmatis exposed to subinhibitory concentrations of G4-stabilizing ligands. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spread of Mycobacterium tuberculosis drug resistance accentuates the demand for anti-tuberculosis drugs with a fundamentally new mechanism of action without conferring cross-resistance. G-quadruplexes (G4, non-canonical DNA structures) are plausible new drug targets. Although G4-stabilizing ligands have been shown to inhibit mycobacterial growth, the exact mechanism of their action is uncertain. The aim of this study was to assess a possible correlation between putative G4 elements in a model mycobacterial strain M. smegmatis MC2155 and transcriptomic changes under the action of subinhibitory concentrations of G4 ligands BRACO-19 and TMPyP4. We also planned to compare the results with corresponding data previously obtained by us using higher, inhibitory concentrations of these ligands. For BRACO-19, we identified 589 (316↑; 273↓) and 865 (555↑; 310↓) differentially expressed genes at 5 µМ and 10 µМ, respectively. For TMPyP4, we observed the opposite trend, the number of differentially expressed genes decreased at higher concentration of the ligand: 754 (337↑; 417↓) and 702 (359↑; 343↓) for 2 µМ and 4 µМ, respectively. Statistical analysis revealed no correlation between ligand-induced transcriptomic changes and genomic localization of the putative quadruplex-forming sequences. At the same time, the data indicate certain functional specificity of the ligand-mediated transcriptomic effects, with TMPyP4 significantly affecting expression levels of transcription factors and arginine biosynthesis genes and BRACO-19 significantly affecting expression levels of iron metabolism and replication and reparation system genes.
Collapse
Affiliation(s)
- MV Zaychikova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - DA Bespiatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - MV Malakhova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - IN Bodoev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - TS Vedekhina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - VA Veselovsky
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - KM Klimina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - AM Varizhuk
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - EA Shitikov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|
10
|
Shitikov EA, Bespiatykh DA, Bodoev IN, Zaychikova MV. [G-quadruplex structures in bacteria: functional properties and prospects for use as biotargets]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:93-103. [PMID: 35485483 DOI: 10.18097/pbmc20226802093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
G-quadruplexes (G4), non-canonical secondary DNA structures, are intensively investigated for a long time. In eukaryotic organisms they play an important role in the regulation of gene expression and DNA repair. G4 have also been found in the genomes of numerous bacteria and archaea, but their functional role has not yet been fully explored. Nevertheless, their participation in the formation of antigenic variability, pathogenicity, antibiotic resistance and survival in extreme conditions has been established. Currently, many tools have been developed to detect potential G4 sequences and confirm their formation ability. Since the controlled formation and resolution of the quadruplex are significant means for the regulation of genes critical for survival, a promising direction is the search for ligands - compounds that can have a stabilizing effect on the quadruplex structure and thereby alter gene expression. Currently, a number of ligands are already known, their use stops the growth of pathogenic microorganisms. G4 ligands are of interest as potential antibiotics, which are extremely relevant due to the wide spread of drug resistant pathogens.
Collapse
Affiliation(s)
- E A Shitikov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - D A Bespiatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - I N Bodoev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - M V Zaychikova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|