1
|
Barrios-Rafael VV, Ahumada-Manuel CL, Orgaz-Ramírez S, Nava-Galeana J, Guzmán J, Moreno S, Bustamante VH, Núñez C. The c-di-GMP effector FleQ controls alginate production by repressing transcription of algD in Azotobacter vinelandii. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001556. [PMID: 40272995 PMCID: PMC12022260 DOI: 10.1099/mic.0.001556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
Production of the exopolysaccharide alginate by Azotobacter vinelandii, member of the Pseudomonadaceae family, is positively controlled by the second messenger c-di-GMP. This effect was solely attributed to the role of c-di-GMP in activating the alginate polymerase complex. In this study, the role of c-di-GMP in algD transcription, which encodes the key enzyme for alginate synthesis, was investigated. algD transcription correlated with artificially high or low levels of c-di-GMP. Moreover, FleQ, one of the best-characterized c-di-GMP effectors, was found to exert a negative effect on alginate production and algD transcription, as both increased in a ΔfleQ mutant relative to the wild-type strain or the ΔfleQ/fleQ+ complemented strain. Electrophoretic mobility shift assays (EMSAs) confirmed that FleQ directly binds to the regulatory region of algD, which was consistent with the presence of two FleQ binding sites in the vicinity of the algD RpoS-dependent promoter. In A. vinelandii, c-di-GMP is essential for the expression of alginate C-5 epimerases (AlgE1-6), which are necessary for structuring the envelope of differentiated cells, known as cysts. However, FleQ was not involved in this regulation. Collectively, our results support a model in which algD transcription is under the positive control of c-di-GMP, while FleQ may only partially mediate this effect. In contrast, our study revealed a FleQ-independent regulatory mechanism for the control of A. vinelandii encystment.
Collapse
Affiliation(s)
- Víctor V. Barrios-Rafael
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Carlos L. Ahumada-Manuel
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Scherezada Orgaz-Ramírez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Jessica Nava-Galeana
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Josefina Guzmán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Soledad Moreno
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Víctor H. Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| |
Collapse
|
2
|
Shehata NS, Elwakil BH, Elshewemi SS, Ghareeb DA, Olama ZA. In vitro and in vivo studies of selenium nanoparticles coated bacterial polysaccharide as anti-lung cancer agents. Microb Cell Fact 2024; 23:339. [PMID: 39702121 DOI: 10.1186/s12934-024-02601-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024] Open
Abstract
Microbial exopolysaccharides (EPSs) possess valuable biological functions and fascinating physicochemical properties. On the other hand, lung cancer is the primary contributor to global cancer-related deaths. However, health and safety concerns have prevented the identification and approval of any medications, including chemotherapeutic agents, for lung cancer treatment to date. The current study aims to enhance the production of bacterial EPS as a coating agent for the synthesis of selenium nanoparticles (AZEPS-SeNPs), to enhance their biological activity against pathogenic microbes, human lung adenocarcinoma cells (A549) in vitro, and diethyl nitrosamine (DEN)-induced lung cancer in vivo. The synthesized AZEPS-SeNPs exhibited a significant antifungal effect reaching 49.3 mm against Candida albicans. SeNPs and EPSs demonstrated a concentration-dependent synergistic antioxidant effect of 96.8%. Moreover, the synthesized nanoparticles showed a highly potent cytotoxic effect against A549 cells (1.724 ± 0.08 µg/mL) with a therapeutic index of 7.18 ± 0.21 that leads to increased reactive oxygen species (ROS) production. AZEPS-SeNPs demonstrated a proapoptotic effect on the lung adenocarcinoma A549 cell line by stimulating caspase 3 and Bax (7.08-fold and 6.505-fold, respectively), inhibiting the anti-apoptotic gene Bcl2, and arresting the cell cycle in the S phase. In vivo study revealed that the AZEPS-SeNPs-treated group showed improved histopathological examination of lung tissue sections. The present study concluded the efficiency of the synthesized bacterial EPS-SeNPs as multi-functional antimicrobial, anticancer and antioxidant agent.
Collapse
Affiliation(s)
- Nourhan S Shehata
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt.
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Bassma H Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Salma S Elshewemi
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Doaa A Ghareeb
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21526, Egypt
| | - Zakia A Olama
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Rosales-Cruz A, Reyes-Nicolau J, Minto-González E, Meneses-Carbajal A, Mondragón-Albarrán C, López-Pliego L, Castañeda M. A Homolog of the Histidine Kinase RetS Controls the Synthesis of Alginates, PHB, Alkylresorcinols, and Motility in Azotobacter vinelandii. Curr Microbiol 2024; 81:311. [PMID: 39153035 PMCID: PMC11330419 DOI: 10.1007/s00284-024-03835-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
The two-component system GacS/A and the posttranscriptional control system Rsm constitute a genetic regulation pathway in Gammaproteobacteria; in some species of Pseudomonas, this pathway is part of a multikinase network (MKN) that regulates the activity of the Rsm system. In this network, the activity of GacS is controlled by other kinases. One of the most studied MKNs is the MKN-GacS of Pseudomonas aeruginosa, where GacS is controlled by the kinases RetS and LadS; RetS decreases the kinase activity of GacS, whereas LadS stimulates the activity of the central kinase GacS. Outside of the Pseudomonas genus, the network has been studied only in Azotobacter vinelandii. In this work, we report the study of the RetS kinase of A. vinelandii; as expected, the phenotypes affected in gacS mutants, such as production of alginates, polyhydroxybutyrate, and alkylresorcinols and swimming motility, were also affected in retS mutants. Interestingly, our data indicated that RetS in A. vinelandii acts as a positive regulator of GacA activity. Consistent with this finding, mutation in retS also negatively affected the expression of small regulatory RNAs belonging to the Rsm family. We also confirmed the interaction of RetS with GacS, as well as with the phosphotransfer protein HptB.
Collapse
Affiliation(s)
- Araceli Rosales-Cruz
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria Puebla, Apdo. Postal 1622, C. P. 72000, Puebla, Pue, Mexico
| | - Jimena Reyes-Nicolau
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria Puebla, Apdo. Postal 1622, C. P. 72000, Puebla, Pue, Mexico
| | - Eduardo Minto-González
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria Puebla, Apdo. Postal 1622, C. P. 72000, Puebla, Pue, Mexico
| | - Alan Meneses-Carbajal
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria Puebla, Apdo. Postal 1622, C. P. 72000, Puebla, Pue, Mexico
| | - Claudia Mondragón-Albarrán
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria Puebla, Apdo. Postal 1622, C. P. 72000, Puebla, Pue, Mexico
| | - Liliana López-Pliego
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria Puebla, Apdo. Postal 1622, C. P. 72000, Puebla, Pue, Mexico
| | - Miguel Castañeda
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, IC-11 Ciudad Universitaria Puebla, Apdo. Postal 1622, C. P. 72000, Puebla, Pue, Mexico.
| |
Collapse
|
4
|
Fujiwara T, Mano E, Nango E. Structural basis for the minimal bifunctional alginate epimerase AlgE3 from Azotobacter chroococcum. FEBS Lett 2024; 598:1422-1437. [PMID: 38649293 DOI: 10.1002/1873-3468.14886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024]
Abstract
Among the epimerases specific to alginate, some of them in Azotobacter genera convert β-d-mannuronic acid to α-l-guluronic acid but also have lyase activity to degrade alginate. The remarkable characteristics of these epimerases make it a promising enzyme for tailoring alginates to meet specific demands. Here, we determined the structure of the bifunctional mannuronan C-5 epimerase AlgE3 from Azotobacter chroococcum (AcAlgE3) in complex with several mannuronic acid oligomers as well as in apo form, which allowed us to elucidate the binding manner of each mannuronic acid oligomer, and the structural plasticity, which is dependent on calcium ions. Moreover, a comprehensive analysis of the lyase activity profiles of AcAlgE3 combined with structural characteristics explained the preference for different chain length oligomers.
Collapse
Affiliation(s)
- Takaaki Fujiwara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Eriko Nango
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
- RIKEN SPring-8 Center, Sayo-gun, Japan
| |
Collapse
|
5
|
Chowdhury-Paul S, Martínez-Ortíz IC, Pando-Robles V, Moreno S, Espín G, Merino E, Núñez C. The Azotobacter vinelandii AlgU regulon during vegetative growth and encysting conditions: A proteomic approach. PLoS One 2023; 18:e0286440. [PMID: 37967103 PMCID: PMC10651043 DOI: 10.1371/journal.pone.0286440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023] Open
Abstract
In the Pseduomonadacea family, the extracytoplasmic function sigma factor AlgU is crucial to withstand adverse conditions. Azotobacter vinelandii, a closed relative of Pseudomonas aeruginosa, has been a model for cellular differentiation in Gram-negative bacteria since it forms desiccation-resistant cysts. Previous work demonstrated the essential role of AlgU to withstand oxidative stress and on A. vinelandii differentiation, particularly for the positive control of alginate production. In this study, the AlgU regulon was dissected by a proteomic approach under vegetative growing conditions and upon encystment induction. Our results revealed several molecular targets that explained the requirement of this sigma factor during oxidative stress and extended its role in alginate production. Furthermore, we demonstrate that AlgU was necessary to produce alkyl resorcinols, a type of aromatic lipids that conform the cell membrane of the differentiated cell. AlgU was also found to positively regulate stress resistance proteins such as OsmC, LEA-1, or proteins involved in trehalose synthesis. A position-specific scoring-matrix (PSSM) was generated based on the consensus sequence recognized by AlgU in P. aeruginosa, which allowed the identification of direct AlgU targets in the A. vinelandii genome. This work further expands our knowledge about the function of the ECF sigma factor AlgU in A. vinelandii and contributes to explains its key regulatory role under adverse conditions.
Collapse
Affiliation(s)
- Sangita Chowdhury-Paul
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Iliana C. Martínez-Ortíz
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Victoria Pando-Robles
- Instituto Nacional de Salud Pública, Centro de Investigación Sobre Enfermedades Infecciosas, Cuernavaca, Morelos, México
| | - Soledad Moreno
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| |
Collapse
|
6
|
Biełło KA, Lucena C, López-Tenllado FJ, Hidalgo-Carrillo J, Rodríguez-Caballero G, Cabello P, Sáez LP, Luque-Almagro V, Roldán MD, Moreno-Vivián C, Olaya-Abril A. Holistic view of biological nitrogen fixation and phosphorus mobilization in Azotobacter chroococcum NCIMB 8003. Front Microbiol 2023; 14:1129721. [PMID: 36846808 PMCID: PMC9945222 DOI: 10.3389/fmicb.2023.1129721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Nitrogen (N) and phosphorus (P) deficiencies are two of the most agronomic problems that cause significant decrease in crop yield and quality. N and P chemical fertilizers are widely used in current agriculture, causing environmental problems and increasing production costs. Therefore, the development of alternative strategies to reduce the use of chemical fertilizers while maintaining N and P inputs are being investigated. Although dinitrogen is an abundant gas in the atmosphere, it requires biological nitrogen fixation (BNF) to be transformed into ammonium, a nitrogen source assimilable by living organisms. This process is bioenergetically expensive and, therefore, highly regulated. Factors like availability of other essential elements, as phosphorus, strongly influence BNF. However, the molecular mechanisms of these interactions are unclear. In this work, a physiological characterization of BNF and phosphorus mobilization (PM) from an insoluble form (Ca3(PO4)2) in Azotobacter chroococcum NCIMB 8003 was carried out. These processes were analyzed by quantitative proteomics in order to detect their molecular requirements and interactions. BNF led to a metabolic change beyond the proteins strictly necessary to carry out the process, including the metabolism related to other elements, like phosphorus. Also, changes in cell mobility, heme group synthesis and oxidative stress responses were observed. This study also revealed two phosphatases that seem to have the main role in PM, an exopolyphosphatase and a non-specific alkaline phosphatase PhoX. When both BNF and PM processes take place simultaneously, the synthesis of nitrogenous bases and L-methionine were also affected. Thus, although the interdependence is still unknown, possible biotechnological applications of these processes should take into account the indicated factors.
Collapse
Affiliation(s)
- Karolina A. Biełło
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Carlos Lucena
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Francisco J. López-Tenllado
- Departamento de Química Orgánica, Instituto Universitario de Investigación en Química Fina y Nanoquímica (IUNAN), Universidad de Córdoba, Córdoba, Spain
| | - Jesús Hidalgo-Carrillo
- Departamento de Química Orgánica, Instituto Universitario de Investigación en Química Fina y Nanoquímica (IUNAN), Universidad de Córdoba, Córdoba, Spain
| | - Gema Rodríguez-Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Lara P. Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Víctor Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain,*Correspondence: Alfonso Olaya-Abril,
| |
Collapse
|