1
|
Yang J, Zhao S, Zhi W, Lu T, Qiao H, Liu W, Dou Y, Tan H, Zhou H. Improvement of silage characteristics of Lactobacillus salivarius HMC4 and improvement of silage quality of king grass. Front Microbiol 2024; 15:1468577. [PMID: 39723146 PMCID: PMC11668806 DOI: 10.3389/fmicb.2024.1468577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/07/2024] [Indexed: 12/28/2024] Open
Abstract
The effect of HMC4 produced by protoplast fusion on silage was studied. The silage formula was composed of heterozygote HMC4 (Group C), parent Lactobacillus (Group A) and a combination of two parents (Group B). The fermentation quality and microbial composition of each batch of silage were evaluated. The results showed that the propionic acid concentration in group C was the lowest, but the organic acid content in feed was significantly increased. Groups B and C had slightly lower crude fiber levels than group A, while groups A and C had higher levels of soluble sugars. The dynamic observation of C group showed that the nutrient composition of feed changed gradually with the extension of silage period. High-throughput sequencing revealed fluctuations in microbial composition before and after silage. Over time, Lactobacillus became the dominant strain and its numbers steadily increased.
Collapse
Affiliation(s)
- Jinsong Yang
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Songsong Zhao
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Wenbo Zhi
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Tianyu Lu
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Huahua Qiao
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Wei Liu
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Ying Dou
- College of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Haisheng Tan
- College of Materials Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Hanlin Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- Key Laboratory of Ministry of Agriculture and Rural Affairs for Germplasm Resources Conservation and Utilization of Cassava, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Gene Resources and Germplasm Enhancement in Southern China, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| |
Collapse
|
2
|
Du Z, Yang F, Fang J, Yamasaki S, Oya T, Nguluve D, Kumagai H, Cai Y. Silage preparation and sustainable livestock production of natural woody plant. FRONTIERS IN PLANT SCIENCE 2023; 14:1253178. [PMID: 37746011 PMCID: PMC10514673 DOI: 10.3389/fpls.2023.1253178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
As the global population increases and the economy grows rapidly, the demand for livestock products such as meat, egg and milk continue to increase. The shortage of feed in livestock production is a worldwide problem restricting the development of the animal industry. Natural woody plants are widely distributed and have a huge biomass yield. The fresh leaves and branches of some woody plants are rich in nutrients such as proteins, amino acids, vitamins and minerals and can be used to produce storage feed such as silage for livestock. Therefore, the development and utilization of natural woody plants for clean fermented feed is important for the sustainable production of livestock product. This paper presents a comprehensive review of the research progress, current status and development prospects of forageable natural woody plant feed resources. The nutritional composition and uses of natural woody plants, the main factors affecting the fermentation of woody plant silage and the interaction mechanism between microbial co-occurrence network and secondary metabolite are reviewed. Various preparation technologies for clean fermentation of woody plant silage were summarized comprehensively, which provided a sustainable production mode for improving the production efficiency of livestock and producing high-quality livestock product. Therefore, woody plants play an increasingly important role as a potential natural feed resource in alleviating feed shortage and promoting sustainable development of livestock product.
Collapse
Affiliation(s)
- Zhumei Du
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Crop, Livestock, and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Fuyu Yang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Jiachen Fang
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Seishi Yamasaki
- Crop, Livestock, and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Tetsuji Oya
- Crop, Livestock, and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Damiao Nguluve
- Animal Science Directorate, Agricultural Research Institute of Mozambique, Matola, Mozambique
| | - Hajime Kumagai
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yimin Cai
- Crop, Livestock, and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| |
Collapse
|
3
|
Bao J, Ge G, Wang Z, Xiao Y, Zhao M, Sun L, Wang Y, Zhang J, Jia Y, Du S. Effect of isolated lactic acid bacteria on the quality and bacterial diversity of native grass silage. FRONTIERS IN PLANT SCIENCE 2023; 14:1160369. [PMID: 37484462 PMCID: PMC10358727 DOI: 10.3389/fpls.2023.1160369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/02/2023] [Indexed: 07/25/2023]
Abstract
Objective The objective of this study was to isolate lactic acid bacteria (LAB) from native grasses and naturally fermented silages, determine their identity, and assess their effects on silage quality and bacterial communities of the native grasses of three steppe types fermented for 60 days. Methods Among the 58 isolated LAB strains, Limosilactobacillus fermentum (BL1) and Latilactobacillus graminis (BL5) were identified using 16S rRNA sequences. Both strains showed normal growth at 15- 45°C temperature, 3-6.5% NaCl concentration, and pH 4-9. Two isolated LAB strains (labeled L1 and L5) and two commercial additives (Lactiplantibacillus plantarum and Lentilactobacillus buchneri; designated as LP and LB, respectively) were added individually to native grasses of three steppe types (meadow steppe, MS; typical steppe, TS; desert steppe, DS), and measured after 60 d of fermentation. The fresh material (FM) of different steppe types was treated with LAB (1 × 105 colony forming units/g fresh weight) or distilled water (control treatment [CK]). Results Compared with CK, the LAB treatment showed favorable effects on all three steppe types, i.e., reduced pH and increased water-soluble carbohydrate content, by modulating the microbiota. The lowest pH was found in the L5 treatment of three steppe types, at the same time, the markedly (p < 0.05) elevated acetic acid (AA) concentration was detected in the L1 and LB treatment. The composition of bacterial community in native grass silage shifted from Pantoea agglomerans and Rosenbergiella nectarea to Lentilactobacillus buchneri at the species level. The abundance of Lentilactobacillus buchneri and Lactiplantibacillus plantarum increased significantly in L1, L5, LP, and LB treatments, respectively, compared with CK (p < 0.05). Conclusion In summary, the addition of LAB led to the shifted of microbiota and modified the quality of silage, and L. fermentum and L. graminis improved the performance of native grass silage.
Collapse
Affiliation(s)
- Jian Bao
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Gentu Ge
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhijun Wang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanzi Xiao
- College of Agriculture and Forestry, Hulunbuir University, Hulunbuir, China
| | - Muqier Zhao
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Lin Sun
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Grassland Research Institute, Hohhot, China
| | - Yu Wang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiawei Zhang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Yushan Jia
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Shuai Du
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
4
|
Effects of Bacteriocin-Producing Lactiplantibacillus Plantarum on Fermentation, Dynamics of Bacterial Community, and Their Functional Shifts of Alfalfa Silage with Different Dry Matters. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This study investigated the effects of two bacteriocin-producing Lactiplantibacillus plantarum strains on fermentation, bacterial communities, and their functions of alfalfa silage with two dry matter (DM) contents of 355 (moderate DM) and 428 (high DM) g/kg fresh weight. Before ensiling, alfalfa was treated with (1) distilled water (control), (2) the commercial strain L. plantarum MTD/1, (3) bacteriocin-producing L. plantarum ATCC14917, and (4) bacteriocin-producing L. plantarum LP1-4, and ensiled for 3 d, 7 d, 14 d, 60 d, and 90 d, respectively. Application of ATCC14917 promoted lactic acid production in the moderate DM silage at the early fermentation stage (3 d). Silages treated with ATCC14917 and LP1-4 showed lower DM losses and non-protein nitrogen concentrations versus the control or MDT/1-treated silage (p < 0.05). During fermentation, a high proportion of Weissella cibaria was observed in the silages with high DM content from 3 to 60 d of ensiling, and the functions of carbohydrate and amino acid metabolisms of silage bacterial community were decreased by ATCC14917 before 60 d of ensiling. In addition, ATCC14917 also inhibited the growth of Aerococcus and Enterobacter in silage. Therefore, the bacteriocin-producing L. plantarum ATCC14917 has a great potential to improve alfalfa silage quality, nutritive value, and safety as well.
Collapse
|
5
|
Li M, Lv R, Zhou H, Zi X. Dynamics and correlations of chlorophyll and phytol content with silage bacterial of different growth heights Pennisetum sinese. FRONTIERS IN PLANT SCIENCE 2022; 13:996970. [PMID: 36311147 PMCID: PMC9608139 DOI: 10.3389/fpls.2022.996970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The dynamics and correlations of chlorophyll and phytol content with silage bacterial of different growth heights Pennisetum sinese were investigated. The results demonstrated that the chlorophyll and phytol content of P. sinese before and after ensiled decreased with the increase of growth height. Ensiling significantly reduced pigment content but had no significant effect on phytol. In addition, P. sinese pigment yield before and after ensiled increased with growth heights increasing, and the yield at 150 or 180 cm was obviously higher. Moreover, the higher silage quality V-Score were at 150 or 180 cm growth heights. Furthermore, the silage microbial diversity were varied by growth heights, and some specific undesirable microorganisms (Acinetobacter, Cellvibrio, Sphingobacterium, etc.) were negatively correlated with pigment and phytol content. Therefore, with comprehensive consideration of pigment, phytol yield, and silage quality, the optimum harvest growth height of P. sinese was 150 cm. Furthermore, precise reduction of particular undesirable microorganisms maybe helps to preserve pigments and phytol.
Collapse
Affiliation(s)
- Mao Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Renlong Lv
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Hanlin Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Xuejuan Zi
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Key Laboratory of Germplasm Resources of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Danzhou, China
| |
Collapse
|